Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.
This came about while tinkering up a shade for a repurposed LED downlight:
PVC fitting – boring setup
It’s a 4 inch DWV pipe coupling I bored out to fit the LED housing, which was ever so slightly larger than the pipe OD.
Cutting it off required as much workspace as the poor little lathe had:
PVC fitting – cutoff setup
Ignore the toolpost handle across the top. What’s important: the cutoff blade poking out of the QCTP, above the orange carriage stop lock lever, extending just far enough to cut through the coupling’s wall before the compound hits the coupling. The compound slide is all the way out against the cross-slide DRO, rotated at the only angle putting the tool where it needs to be and clearing the end of the coupling.
It ended reasonably well:
PVC fitting – LED floor lamp
But, in retrospect, was hideously bad practice. Next time, I’ll make a fixture to hold the fitting on a faceplate.
Attempting to cut laminated cardstock decks for the Homage Tektronix Circuit Computer required a bit more blade extension than my LM12UU holder made available:
Drag Knife – LM12UU ground shaft – assembled
Shortening the 12 mm shaft wasn’t going to happen, so I knocked a little bit off the blade holder to give the knurled lock ring slightly more travel:
Drag Knife Holder – shortening stop
The lathe cutoff blade is a bit to the right of the new cut, but you get the general idea: not a whole lot of clearance in there.
The Mini-Lathe DROs eat a 390 alkaline coin cell a year, more or less:
Mini-Lathe DRO – battery life
The other DRO’s cell was 10 mV higher, so it might have survived another few weeks. I’ll call it a year, as the OEM cells failed half a year after I got the thing and these are the second set.
The last time I did this, I wedged a thin foam sheet below the display PCB to put a bit more pressure on the (+) contact tab sticking down from the middle of the plate:
Mini-Lathe DRO – battery compartment
The (-) contact is a pad on the PCB below the battery compartment. The glaring metal reflector is part of the curved cell retainer.
I finally decommissioned my old Thing-O-Matic, as it’s been far surpassed by the current generation of dirt-cheap Prusa-style 3D printers, and must now figure out what to do with about 10 kg of 3 mm ABS filament. Yes, 3 mm filament from back in the Bad Old Days.
Also back in the day, our Larval Engineer made millifiori creations in glass (at school) and polymer clay, building up the final piece from murrine canes, which suggested a similar technique using filament strands:
Filament Millefiori – 160C pipe – slice detail
Well, maybe it’s not exactly art …
Just to see how it might work, I packed a random length of conduit with filament snippets and jammed a thermocouple into the middle:
Filament Millefiori – packed conduit
Which went into the shop’s sacrificial Dutch oven over low heat:
Some persuasion with a hammer and drift punch extracted the fused filament:
Filament Millefiori – 250C results
Obviously, the concept needs more work, but the bottom side looks promising:
Filament Millefiori – 250C results – bottom
Wrapping the bundle with silicone tape should keep the filament from sticking to the tube and provide uniform compression:
Filament Millefiori – 235C silicone wrap
I forced it into the tube and wrapped the whole affair with aluminum foil to confine the hot ABS stench:
Filament Millefiori – 235C heating
I held this one at 235 °C for a few minutes, cooled, unwrapped, and discovered the silicone wrap worked as expected:
Filament Millefiori – 235C thermocouple blob
OK, the blob on each end wasn’t expected, but at least the thermocouple came out with gentle persuasion. The compressed filament looked like it should be edible:
Filament Millefiori – 235C results
The molten filament oozed out of the wrap inside the tube, over there toward the right.
The filament snippets have a distinct curvature, brought on by years spent snuggled around a spool’s core, so I wondered if they could be straightened by application of somewhat less heat. Wikipedia lists the glass transition temperature for various ABS compositions as around 105 °C, so I packed the tube with more snippets and affixed the thermocouple with silicone tape:
Filament Millefiori – 100C setup
Wrap with foil, heat to 100 °C, let cool, and they’re definitely straighter than the unheated white strand at the bottom:
Filament Millefiori – 100C results
Having learned my lesson with a thermocouple inside the strands, the straightened strands get a looser silicone wrap with the thermocouple secured to the outside of the bundle:
Filament Millefiori – 160C setup
Heat to 160 °C:
Filament Millefiori – 160C setup
Let cool and (easily!) slide the compressed bundle out of the tube:
Filament Millefiori – 160C cooling
The silicone wrap definitely mushed the strands together, as shown by the larger diameter on the uncompressed end:
Filament Millefiori – 160C results
Bandsawing the bundle reveals nicely fused filaments inside, along with melty ends that stuck out of the wrap:
Filament Millefiori – 160C cut end
Thinking shorter lengths might pack better without straightening, I faced the ends of a thick aluminum pipe and stuffed as many snippets into it as would fit. This is the point where a real artist would arrange the filaments in a pleasing pattern, if not a picture, but I was content with a random layout:
Filament Millefiori – 160C pipe – cable in pipe
That’s what the ends looked like after heating to 160 °C: somewhat glazed, reasonably fused, but certainly not compacted. The other end pointed upward and definitely felt the heat:
Filament Millefiori – 160C pipe – cable melty end detail
With a PCV pipe “collet” holding the cable / cane / murrina in the chuck, I faced the end:
Filament Millefiori – 160C pipe – cable facing
After taking this picture, I came to my senses and bandsawed the slice instead:
Filament Millefiori – 160C pipe – cutoff tool
Parting the slice in the lathe might have worked, but it just seemed like a really really bad idea when I looked at the setup.
A PVC pipe spacer kept the slice lined up in the chuck jaws while facing the bandsawed end:
Filament Millefiori – 160C pipe – slice facing
The slice and the cable:
Filament Millefiori – 160C pipe – slice and cable
Although the filament snippets fuse together without a silicone tape compression wrap, the gaps collect plenty of swarf during the cutting & facing:
Filament Millefiori – 160C pipe – cable end detail
The snippets along the outside, closest to the pipe, obviously got hotter than the ones in the middle and fused more solidly.
The pipe has a 35 mm ID for an area 136 times larger than a 3 mm filament. I packed about 100 snippets into the pipe, a 0.73 packing fraction, which looks to be in the right ballpark for the high end of the Circle Packing Problem. If they were straighter, maybe a few more would fit, but twisting the lot into a cable seemed to align them pretty well.
Perhaps filling the gaps with pourable epoxy before cutting the slices would help? A completely filled interior might require pulling a good vacuum on the whole thing.
A hexagonal pipe would produce slices one could tile into a larger sheet.
All in all, a useful exercise, but … it ain’t Art yet!
My high hopes for the UHMW bushing supporting the impeller lasted the better part of a day, because direct contact between the impeller and the motor bearing produced an absurdly loud and slowly pulsating rumble:
Bath Vent Fan – bushing installed
My hope that the UHMW would wear into a quieter configuration lasted a week …
Back in the Basement Shop, some free-air tinkering showed the impeller produced enough suction to pull itself downward along the shaft and jam itself firmly against the motor frame. My initial thought of putting a lock ring around the shaft to support the impeller turned out to be absolutely right.
So, make a small ring:
Bath Vent Fan – small lock ring – c-drill
With a 4-40 setscrew in its side, perched atop the impeller for scale:
Bath Vent Fan – small lock ring – size
It just barely fits between the impeller and the motor frame:
Bath Vent Fan – small lock ring – installed
This reduced the noise, but the hole in the impeller has worn enough to let it rotate on the shaft and the rumble continued unabated. The correct way to fix this evidently requires a mount clamped to both the shaft and the impeller.
Fast-forward a day …
A careful look at the impeller shows seven radial ribs, probably to reduce the likelihood of harmonic vibrations. After a bit of dithering, I decided not to worry about an off-balance layout, so the screws sit on a 9 mm radius at ±102.9° = 2 × 360°/7 from a screw directly across from the setscrew in another slice from the 1 inch aluminum rod:
Bath Vent Fan – mount ring – tapping
Centered on the disk and using LinuxCNC’s polar notation, the hole positions are:
As usual, I jogged the drill downward while slobbering cutting fluid. I loves me some good manual CNC action.
Put the mount on a 1/4 inch tube, stick it into the impeller, and transfer-punch the screw holes:
Bath Vent Fan – mount ring – impeller marking
Apparently, some years ago I’d cut three screws to just about exactly the correct length:
Bath Vent Fan – mount ring – test fit – bottom
I knew I kept them around for some good reason!
The 9 mm radius just barely fits the screw heads between the ribs:
Bath Vent Fan – mount ring – test fit – top
Some Dremel cutoff wheel action extended the motor shaft flat to let the setscrew rest on the bottom end:
Bath Vent Fan – mount ring – shaft flat
Then it all fit together:
Bath Vent Fan – mount ring – installed
The fan now emits a constant whoosh, rather than a pulsating rumble, minus all the annoying overtones. It could be quieter, but it never was, so we can declare victory and move on.
Dropping fifty bucks on a replacement fan + impeller unit would might also solve the problem, but it just seems wrong to throw all that hardware in the trash.
And, despite making two passes at the problem before coming up with a workable solution, I think that’s the only way (for me, anyhow) to get from “not working” to “good as it ever was”, given that I didn’t quite understand the whole problem or believe the solution at the start.
But it should be painfully obvious why I don’t do Repair Cafe gigs …
Back in the day, bathtubs had a porcelain coating over a cast-iron carcass, so embedding little magnets in shower curtains worked perfectly to keep the loose ends from billowing out of the tub. Surprisingly, even here in the future, with plastic bathtubs ruling the land, some shower curtains still have magnets. The mud-job tile walls of shower stall in the Black Bathroom have nary a trace of iron, but we though I could add ferrous targets for a new shower curtain, thusly:
Shower Curtain Anchor – installed
The magnet lives inside a heat-sealed disk, so it’s (more-or-less) isolated from the water. As you’d expect, it’s a cheap ceramic magnet, not a high-performance neodymium super magnet, with no more strength than absolutely necessary to work under the most ideal of conditions.
My anchors must also be waterproof, firmly attached, non-marking, easily removable, and no more ugly than absolutely necessary. The general idea is to slice the bottom from a pill bottle, entomb a thin steel disk in epoxy, and attach to the tile with a patch of outdoor-rated foam tape.
So, we begin …
Cutting a narrow ring from a pill bottle requires a collet around the whole circumference, which started life as some sort of stout aluminum pole:
Shower Curtain Anchor – cutting tube stock
Bore out the inside, with a small step to locate the bottle:
Shower Curtain Anchor – boring fixture
Clean up the outside, just for pretty:
Shower Curtain Anchor – turning fixture OD
Slit the fixture to let it collapse around the bottle, then chuck up the first victim with support from a conveniently sized drill chuck in the tailstock:
Shower Curtain Anchor – cutting bottle
I did a better job of cutting the second bottle to the proper length:
Shower Curtain Anchor – parting base
Nibble disks from sheet metal, half-fill the bottle bottoms with steel-filled (and, thus, magnetic!) JB Weld epoxy, insert disks, add sufficient epoxy to cover the evidence:
Shower Curtain Anchor – epoxy curing
Fast-forward to the next day, punch out two disks of double-sided foam tape:
Shower Curtain Anchor – adhesive foam
Affix, install, and it’s all good.
Actually, it’s not. The ceramic magnets are so weak they don’t hold the curtain nearly well enough to satisfy me. The next anchor iteration should have embedded neodymium magnets to attract the curtain’s crappy ceramic magnets, but this is Good Enough™ for now.
Painting the patio railing required removing the short section on the garage, which stalled with a thoroughly galled / corroded nut on the 2 inch bolt going through the wall. Deploying a Dremel slitting wheel and bashing the slit open with a cold chisel saved the day, as shown in this staged reenactment:
Patio railing – square head bolt – extraction
It seems square head bolts have gone out of fashion, at least in the 3/8-16 size seen here, over the last half century:
Patio railing – square head bolts
I reused the lag screw with no qualms at all.
The local fastener emporium had square bolts ranging upward from 3/4-10, which wasn’t much help. Amazon has ’em, if you spend enough time rummaging around in the debris from its search engine, at a buck apiece in lots of ten. Fortunately, a local big-box home repair store had 3/8-16 hex head steel bolts and square nuts, so I needn’t start from scratch.
Start by turning off the hex head:
Patio railing – square head bolt – removing hex head
Thread the end, starting in the lathe and ending with a die turned just barely enough to accept the nut:
Patio railing – square head bolt – threading
Epoxy the nut in place and sand it to rough up the surface finish enough to hold the primer:
Patio railing – square head bolt – lineup
Yeah, that’s a nasty little zit. Fortunately, nobody will ever notice.
Prime & paint the railing, affix it to the garage wall, then prime & paint the bolt:
Patio railing – square head bolt – installed
Thing looks like it grew there; tell nobody about the zit.
The yellow blotches decorating the shiny black paint come from the pine trees across the driveway. The first day of pine pollen season corresponded to the second day I intended to paint; the dust clouds were a wonder to behold.
Bonus Quality Shop Time!
The far end of the railing around the patio has a bracket against the house siding with a hole intended for a 1/4 inch bolt they never installed, perhaps because there’s no way to maneuver a bolt into the space available.
The threads on the 3/8-16 bolt may be wrecked, but turning the shank down to 1/4 inch isn’t any big deal:
Patio railing – fake bolt – thinning shank
Part off the head with a stub just long enough to fit into the bracket, epoxy that sucker into the hole, and paint it black:
Patio railing – fake bolt – installed
The square post on the left goes down to an anchor in the concrete patio, the railing is welded to a 4 inch column a foot away, and the end of the railing isn’t going anywhere; the fake bolt is purely for show.
And, yes, the dust atop the railing is more pollen from the pine trees responsible for the weird green-yellow reflections on the vertical surfaces.