The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Tag: Improvements

Making the world a better place, one piece at a time

  • RAMPS 1.4 Heatsinking

    The knockoff Arduino Mega board actually has eight thermal vias on the copper pour around the regulator:

    RAMPS Mega - regulator - thermal vias
    RAMPS Mega – regulator – thermal vias

    I sawed up a clip-on heatsink originally intended for a 14 pin DIP, bent it a bit, and epoxied it atop the regulator with enough of a blob to contact the copper pour:

    RAMPS Mega - regulator heatsink - clamping
    RAMPS Mega – regulator heatsink – clamping

    That’s metal-filled JB Weld for good thermal conductivity and electrical insulation:

    RAMPS Mega - regulator heatsink
    RAMPS Mega – regulator heatsink

    The blob affixing the heatsink to the crystal can was an oopsie, but won’t do any harm. It’s not clear the heatsink will do any good in that confined space, but those regulators lead a rough life and need all the help they can get.

    The five stepper drivers sport HR4988SQ chips, rather than Allegro A4988 chips:

    RAMPS - stepper driver - HR4988 chip
    RAMPS – stepper driver – HR4988 chip

    I’d rather see a knockoff than a counterfeit, although by now there’s really no way to tell if it’s a counterfeit knockoff. The Kynix datasheet looks like a direct rip from Allegro.

    They now sport cute little heatsinks, which, for all I know, might help a bit:

    RAMPS shield - stepper heatsinks
    RAMPS shield – stepper heatsinks

    The driver boards are slightly longer than the spacing mandated by the continuous socket strips under the three-in-a-row layout:

    RAMPS - stepper driver board fit
    RAMPS – stepper driver board fit

    Introducing them to Mr Disk Sander (turned by hand) knocked off just enough to make ’em fit.

  • Knockoff RAMPS 1.4 Printer Controller Hardware Kit

    For 36 bucks delivered halfway around the planet, you can get a remarkable pile of gadgetry:

    RAMPS 1.4 - eBay parts
    RAMPS 1.4 – eBay parts

    With a bit of persuasion, it can become a 3D printer controller based on a RepRap RAMPS 1.4 shield or serve as a generic stepper / servo motor driver with three honkin’ MOSFET power switches, two thermistor inputs, a variety of I/O bits from the Arduino Mega PCB, and a monochrome LCD with a knob.

    The persuasion includes un-bending various header pins:

    RAMPS shield - bent pin
    RAMPS shield – bent pin

    Correcting bowlegged pin strips:

    And clipping offending pins:

    The interference between the bottom of the RAMPS power connector pin and the top of the Arduino Mega coaxial power jack seems baked right into the original PCB layout, which is puzzling. If you don’t trim the pins, this is as close as the boards will get:

    Well, of course, you could just jam all those headers together and bend the RAMPS PCB.

    The bent pin near the Reset button connects to the PS_ON output used to enable ATX-style power supplies. You connect the supply’s 5V_SBY always-on output to the VCC pin, which powers the Mega and most of the logic, but not the stepper motor outputs or the heaters.

    To make that work, remove D1 from the board where it’s snuggled along the header strip:

     RAMPS shield - D1 D2 locations
    RAMPS shield – D1 D2 locations

    D2, next to the fuse near the bottom of the picture, provides reverse-polarity protection for the RAMPS board.

    The servo motor power comes from the 5V pin. If you don’t need the PS_ON output and 5V_SBY input, then jumper the VCC and 5V pins together. Otherwise, you could solder-blob those pins on the bottom of the board, which means the servos are always powered.

    Configuring the latest 1.1.x version of Marlin should be straightforward …

  • Tour Easy Daytime Running Light: Now with Chirality!

    In the unlikely event our bikes need two running lights or, perhaps, a running light and a headlight, the solid model now builds mounts for the right side of the fairing, as before:

    Fairing Flashlight Mount - Right side - solid model
    Fairing Flashlight Mount – Right side – solid model

    And for the left side:

    Fairing Flashlight Mount - Left side - solid model
    Fairing Flashlight Mount – Left side – solid model

    Ahhh, chirality: love that word.

    Those pix come from a cleaned-up version of the OpenSCAD code that finally gets the 3-axis rotations right, after a rip-and-replace rewrite to deliver the ball model with its origin in the center of the ball where it belonged and rotate the ring about its geometric center. Then the rotations become trivially easy and a slight hack job spits out a completely assembled model:

    if (Component == "Complete") {
      translate([-BracketHoleOC,0,0])
        PlateBlank();
      mirror(TiltMirror) {
        translate([0,0,ClampOD/2]) {
          rotate([-Roll,ToeIn,Tilt])
            SlotBall();
          rotate([-Roll,ToeIn,Tilt])
            BallClamp();
        }
      }
    }
    

    However, putting the center of rotation directly over the center of the base plate means the ToeIn rotation shifts the bottom of the clamp ring along the X axis, where it can obstruct the mounting holes. Shifting the ring by a little bit:

    ClampOD*sin(ToeIn/2)

    … keeps the ring more-or-less centered on the top of the plate. That’s not quite the correct geometry, but it’s close enough for the small angles needed here.

    Aiming the beam slightly higher makes a 400 lumen flashlight about as bright as any single LED in new car running lights:

    Fairing Flashlight Mount - Mary approaching
    Fairing Flashlight Mount – Mary approaching

    You can just barely make out the snazzy new blue plate on the left side of the fairing.

    A bike’s natural back-and-forth handlebar motion sweeps the beam across the lane, so I think there’s no real benefit from blinking.

    The OpenSCAD source code as a GitHub Gist:

    // Tour Easy Fairing Flashlight Mount
    // Ed Nisley KE4ZNU – July 2017
    // August 2017 –
    /* [Build Options] */
    FlashName = "AnkerLC40"; // [AnkerLC40,AnkerLC90,J5TactV2,InnovaX5]
    Component = "Complete"; // [Ball, BallClamp, Mount, Plates, Bracket, Complete]
    Layout = "Show"; // [Build, Show]
    Support = false;
    MountSupport = false;
    /* [Extrusion] */
    ThreadThick = 0.25; // [0.20, 0.25]
    ThreadWidth = 0.40; // [0.40]
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    Protrusion = 0.01; // [0.01, 0.1]
    HoleWindage = 0.2;
    /* [Fairing Mount] */
    Side = "Right"; // [Right,Left]
    ToeIn = 0; // inward from ahead
    Tilt = 15; // upward from forward (M=20 E=15)
    Roll = 0; // outward from top
    //- Screws *c
    /* [Hidden] */
    ID = 0;
    OD = 1;
    LENGTH = 2;
    /* [Screws and Inserts] */
    ClampInsert = [3.0,4.2,8.0];
    ClampScrew = [3.0,5.9,35.0]; // thread dia, head OD, screw length
    ClampScrewWasher = [3.0,6.75,0.5];
    ClampScrewNut = [3.0,6.1,4.0]; // nyloc nut
    /* [Hidden] */
    F_NAME = 0;
    F_GRIPOD = 1;
    F_GRIPLEN = 2;
    LightBodies = [
    ["AnkerLC90",26.6,48.0],
    ["AnkerLC40",26.6,55.0],
    ["J5TactV2",25.0,30.0],
    ["InnovaX5",22.0,55.0]
    ];
    //- Fairing Bracket
    // Magic numbers taken from the actual fairing mount
    /* [Hidden] */
    inch = 25.4;
    BracketHoleOD = 0.25 * inch; // 1/4-20 bolt holes
    BracketHoleOC = 1.0 * inch; // fairing hole spacing
    // usually 1 inch, but 15/16 on one fairing
    Bracket = [48.0,16.3,3.6 – 0.6]; // fairing bracket end plate overall size
    BracketHoleOffset = (3/8) * inch; // end to hole center
    BracketM = 3.0; // endcap arc height
    BracketR = (pow(BracketM,2) + pow(Bracket[1],2)/4) / (2*BracketM); // … radius
    //- Base plate dimensions
    Plate = [100.0,30.0,6*ThreadThick + Bracket[2]];
    PlateRad = Plate[1]/4;
    RoundEnds = true;
    echo(str("Base plate thick: ",Plate[2]));
    //- Select flashlight data from table
    echo(str("Flashlight: ",FlashName));
    FlashIndex = search([FlashName],LightBodies,1,0)[F_NAME];
    //- Set ball dimensions
    BallWall = 5.0; // max ball wall thickness
    echo(str("Ball wall: ",BallWall));
    BallOD = IntegerMultiple(LightBodies[FlashIndex][F_GRIPOD] + 2*BallWall,1.0);
    echo(str(" OD: ",BallOD));
    BallLength = IntegerMultiple(min(sqrt(pow(BallOD,2) – pow(LightBodies[FlashIndex][F_GRIPOD],2)) – 2*4*ThreadThick,
    LightBodies[FlashIndex][F_GRIPLEN]),1.0);
    echo(str(" length: ",BallLength));
    BallSides = 8*4;
    //- Set clamp ring dimensions
    ClampOD = 50;
    echo(str("Clamp OD: ",ClampOD));
    ClampLength = min(20.0,0.75*BallLength);
    echo(str(" length: ",ClampLength));
    ClampScrewOC = IntegerMultiple((ClampOD + BallOD)/2,1);
    echo(str(" screw OC: ",ClampScrewOC));
    TiltMirror = (Side == "Right") ? [0,0,0] : [0,1,0];
    //- Adjust hole diameter to make the size come out right
    module PolyCyl(Dia,Height,ForceSides=0) { // based on nophead's polyholes
    Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    FixDia = Dia / cos(180/Sides);
    cylinder(r=(FixDia + HoleWindage)/2,h=Height,$fn=Sides);
    }
    //- Fairing Bracket
    // This part of the fairing mount supports the whole flashlight mount
    // Centered on screw hole
    module Bracket() {
    linear_extrude(height=Bracket[2],convexity=2)
    difference() {
    translate([(Bracket[0]/2 – BracketHoleOffset),0,0])
    offset(delta=ThreadWidth)
    intersection() {
    square([Bracket[0],Bracket[1]],center=true);
    union() {
    for (i=[-1,0,1]) // middle circle fills gap
    translate([i*(Bracket[0]/2 – BracketR),0])
    circle(r=BracketR);
    }
    }
    circle(d=BracketHoleOD/cos(180/8),$fn=8); // dead center at the origin
    }
    }
    //- General plate shape
    // Centered on the hole for the fairing bracket
    module PlateBlank() {
    difference() {
    translate([BracketHoleOC,0,0])
    intersection() {
    translate([0,0,Plate[2]/2]) // select upper half of spheres
    cube(Plate,center=true);
    hull()
    if (RoundEnds)
    for (i=[-1,1])
    translate([i*(Plate[0]/2 – PlateRad),0,0])
    resize([Plate[1]/2,Plate[1],2*Plate[2]])
    sphere(r=PlateRad); // nice round ends!
    else
    for (i=[-1,1], j=[-1,1])
    translate([i*(Plate[0]/2 – PlateRad),j*(Plate[1]/2 – PlateRad),0])
    resize([2*PlateRad,2*PlateRad,2*Plate[2]])
    sphere(r=PlateRad); // nice round corners!
    }
    translate([2*BracketHoleOC,0,-Protrusion]) // punch screw holes
    PolyCyl(BracketHoleOD,2*Plate[2],8);
    translate([0,0,-Protrusion])
    PolyCyl(BracketHoleOD,2*Plate[2],8);
    }
    }
    //- Inner plate
    module InnerPlate() {
    difference() {
    PlateBlank();
    translate([0,0,Plate[2] – Bracket[2] + Protrusion]) // punch fairing bracket
    Bracket();
    }
    }
    //- Slotted ball around flashlight
    // Print with brim to ensure adhesion!
    module SlotBall() {
    NumSlots = 8*2; // must be even, half cut from each end
    SlotWidth = 2*ThreadWidth;
    SlotBaseThick = 10*ThreadThick; // enough to hold finger ends together
    RibLength = (BallOD – LightBodies[FlashIndex][F_GRIPOD])/2;
    translate([0,0,(Layout == "Build") ? BallLength/2 : 0])
    rotate([0,(Layout == "Show") ? 90 : 0,0])
    difference() {
    intersection() {
    sphere(d=BallOD,$fn=2*BallSides); // basic ball
    cube([2*BallOD,2*BallOD,BallLength],center=true); // trim to length
    }
    translate([0,0,-LightBodies[FlashIndex][F_GRIPOD]])
    rotate(180/BallSides)
    PolyCyl(LightBodies[FlashIndex][F_GRIPOD],2*BallOD,BallSides); // remove flashlight body
    for (i=[0:NumSlots/2 – 1]) { // cut slots
    a=i*(2*360/NumSlots);
    SlotCutterLength = LightBodies[FlashIndex][F_GRIPOD];
    rotate(a)
    translate([SlotCutterLength/2,0,SlotBaseThick])
    cube([SlotCutterLength,SlotWidth,BallLength],center=true);
    rotate(a + 360/NumSlots)
    translate([SlotCutterLength/2,0,-SlotBaseThick])
    cube([SlotCutterLength,SlotWidth,BallLength],center=true);
    }
    }
    color("Yellow")
    if (Support && (Layout == "Build")) {
    for (i=[0:NumSlots-1]) {
    a = i*360/NumSlots;
    rotate(a + 180/NumSlots)
    translate([(LightBodies[FlashIndex][F_GRIPOD] + RibLength)/2 + ThreadWidth,0,BallLength/(2*4)])
    cube([RibLength,2*ThreadWidth,BallLength/4],center=true);
    }
    }
    }
    //- Clamp around flashlight ball
    module BallClamp(Section="All") {
    BossLength = ClampScrew[LENGTH] – 1*ClampScrewWasher[LENGTH];
    BossOD = ClampInsert[OD] + 2*(6*ThreadWidth);
    difference() {
    union() {
    intersection() {
    sphere(d=ClampOD,$fn=BallSides); // exterior ball clamp
    cube([ClampLength,2*ClampOD,2*ClampOD],center=true); // aiming allowance
    }
    hull()
    for (j=[-1,1])
    translate([0,j*ClampScrewOC/2,-BossLength/2])
    cylinder(d=BossOD,h=BossLength,$fn=6);
    }
    sphere(d=(BallOD + 1*ThreadThick),$fn=BallSides); // interior ball with minimal clearance
    for (j=[-1,1]) {
    translate([0,j*ClampScrewOC/2,-ClampOD]) // screw clearance
    PolyCyl(ClampScrew[ID],2*ClampOD,6);
    translate([0,j*ClampScrewOC/2, // insert clearance
    -(BossLength/2 – ClampInsert[LENGTH] – 3*ThreadThick)])
    rotate([0,180,0])
    PolyCyl(ClampInsert[OD],2*ClampOD,6);
    translate([0,j*ClampScrewOC/2, // insert transition
    -(BossLength/2 – ClampInsert[LENGTH] – 3*ThreadThick)])
    cylinder(d1=ClampInsert[OD]/cos(180/6),d2=ClampScrew[ID],h=6*ThreadThick,$fn=6);
    }
    if (Section == "Top")
    translate([0,0,-ClampOD/2])
    cube([2*ClampOD,2*ClampOD,ClampOD],center=true);
    else if (Section == "Bottom")
    translate([0,0,ClampOD/2])
    cube([2*ClampOD,2*ClampOD,ClampOD],center=true);
    }
    color("Yellow")
    if (Support) { // ad-hoc supports
    NumRibs = 6;
    RibLength = 0.5 * BallOD;
    RibWidth = 1.9*ThreadWidth;
    SupportOC = ClampLength / NumRibs;
    if (Section == "Top") // base plate for adhesion
    translate([0,0,ThreadThick])
    cube([ClampLength + 6*ThreadWidth,RibLength,2*ThreadThick],center=true);
    else if (Section == "Bottom")
    translate([0,0,-ThreadThick])
    cube([ClampLength + 6*ThreadWidth,RibLength,2*ThreadThick],center=true);
    render(convexity=2*NumRibs)
    intersection() {
    sphere(d=BallOD – 0*ThreadWidth); // cut at inner sphere OD
    cube([ClampLength + 2*ThreadWidth,RibLength,BallOD],center=true);
    if (Section == "Top") // select only desired section
    translate([0,0,ClampOD/2])
    cube([2*ClampOD,2*ClampOD,ClampOD],center=true);
    else if (Section == "Bottom")
    translate([0,0,-ClampOD/2])
    cube([2*ClampOD,2*ClampOD,ClampOD],center=true);
    union() { // ribs for E-Z build
    for (j=[-1,0,1])
    translate([0,j*SupportOC,0])
    cube([ClampLength,RibWidth,1.0*BallOD],center=true);
    for (i=[0:NumRibs]) // allow NumRibs + 1 to fill the far end
    translate([i*SupportOC – ClampLength/2,0,0])
    rotate([0,90,0])
    cylinder(d=BallOD – 2*ThreadThick,
    h=RibWidth,$fn=BallSides,center=true);
    }
    }
    }
    }
    //- Mount between fairing plate and flashlight ball
    // Build with support for bottom of clamp screws!
    module Mount() {
    TextRotate = (Side == "Right") ? 0 : 180;
    MountShift = [ClampOD*sin(ToeIn/2),
    0,
    ClampOD/2];
    difference() {
    translate([-BracketHoleOC,0,0]) // put bracket center at origin
    PlateBlank();
    mirror([0,1,0])
    translate([0,0,-Protrusion])
    linear_extrude(height=3*ThreadThick + Protrusion) {
    translate([BracketHoleOC + 15,0,0])
    text(text=">>>",size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([-BracketHoleOC,8,0]) rotate(TextRotate)
    text(text=str("Toe ",ToeIn),size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([-BracketHoleOC,-8,0]) rotate(TextRotate)
    text(text=str("Tilt ",Tilt),size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([BracketHoleOC,-8,0]) rotate(TextRotate)
    text(text=Side,size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([BracketHoleOC,8,0]) rotate(TextRotate)
    text(text=str("Roll ",Roll),size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([-(BracketHoleOC + 15),0,0])
    rotate(90)
    text(text="KE4ZNU",size=4,spacing=1.20,font="Arial",halign="center",valign="center");
    }
    }
    mirror(TiltMirror) {
    translate(MountShift)
    rotate([-Roll,ToeIn,Tilt])
    BallClamp("Bottom");
    color("Yellow")
    if (MountSupport) { // anchor outer corners at worst overhang
    RibWidth = 1.9*ThreadWidth;
    SupportOC = 0.1 * ClampLength;
    difference() {
    rotate([0,0,Tilt])
    translate([(ClampOD – BallOD)*sin(ToeIn/2),0,0])
    for (i=[-4.5,-2.5,0,2.0,4.5])
    translate([i*SupportOC – 0.0,0,(5 + Plate[2])/2])
    cube([RibWidth,0.7*ClampOD,(5 + Plate[2])],center=true);
    translate(MountShift)
    rotate([-Roll,ToeIn,Tilt])
    sphere(d=ClampOD – 2*ThreadWidth,$fn=BallSides);
    }
    }
    }
    }
    //- Build things
    if (Component == "Bracket")
    Bracket();
    if (Component == "Ball")
    SlotBall();
    if (Component == "BallClamp")
    if (Layout == "Show")
    BallClamp("All");
    else if (Layout == "Build")
    BallClamp("Top");
    if (Component == "Mount")
    Mount();
    if (Component == "Plates") {
    translate([0,0.7*Plate[1],0])
    InnerPlate();
    translate([0,-0.7*Plate[1],0])
    PlateBlank();
    }
    if (Component == "Complete") {
    translate([-BracketHoleOC,0,0])
    PlateBlank();
    mirror(TiltMirror) {
    translate([0,0,ClampOD/2]) {
    rotate([-Roll,ToeIn,Tilt])
    SlotBall();
    rotate([-Roll,ToeIn,Tilt])
    BallClamp();
    }
    }
    }
  • Tenergy 18650 Lithium Cells: Initial Capacity

    The daytime running lights on the bikes get noticeably dimmer when the 18650 lithium cell voltage drops below 3.6 V, so I picked up a quartet of Tenergy protected cells and ran ’em through the battery tester:

    Tenergy 18650 Protected - 2017-08-04
    Tenergy 18650 Protected – 2017-08-04

    As with the ATX cells, the voltage decreases almost linearly with charge until it falls off the cliff near the end, but these have a higher terminal voltage throughout most of the curve, which is a Good Thing for LED flashlights.

    These four seem to have about the same overall capacity as the ATX cells, so we’ll run ’em all in sequence and see how long they last.

     

  • Tour Easy Daytime Running Light: Pile of Prototypes

    Although I wish I could come up with a finished design in one pass, usually I end up with a big pile of nope before producing the one I want:

    Fairing Flashlight Mount - Iterations
    Fairing Flashlight Mount – Iterations

    The mounts on the left show the progression from large hemisphere balls to the same-size finger ball to the smaller finger ball, with the smaller cyan arch clamp in the foreground still festooned with its support structure. The stack of plates to the right (with the original faded & distintegrating ABS plates in the bag) comes from reprinting in cyan to match the small mounts now on the bikes:

    Fairing Flashlight Mount - rounded
    Fairing Flashlight Mount – rounded

    Hey, it’s time for a ride!

  • Tour Easy Daytime Running Light: Annotation

    The flashlight mount need not be symmetric after applying all the rotations, so recording how it’s aimed and which end goes forward seemed appropriate:

    Fairing Flashlight Mount - Mount Annotation
    Fairing Flashlight Mount – Mount Annotation

    Optionally, with rounded ends just for pretty:

    Fairing Flashlight Mount - Mount Annotation - rounded
    Fairing Flashlight Mount – Mount Annotation – rounded

    Because the rounding comes from resized spheres, the plate gets a ridge along the top to (maybe) lock the nylon screws / wing nuts in place:

    Fairing Flashlight Mount - Mount - rounded
    Fairing Flashlight Mount – Mount – rounded

    Or discourage them from turning, which would be OK, too. After the second tightening, they don’t seem to come loose, so this may be overthinking the problem.

    All in all, they look pretty good in cyan PETG:

    Fairing Flashlight Mount - rounded
    Fairing Flashlight Mount – rounded

    Believe it or not, that’s aimed so the top edge of the beam is roughly horizontal to keep the hot spot out of oncoming traffic. They’re plenty bright, even on the “low power” setting.

    The flashlight mounting balls produce a decorative brim that ought to be useful for something:

    Slotted ball on platform
    Slotted ball on platform

    Maybe earrings?

    The OpenSCAD source code as a GitHub Gist:

    // Tour Easy Fairing Flashlight Mount
    // Ed Nisley KE4ZNU – July 2017
    // August 2017 –
    /* [Build Options] */
    FlashName = "AnkerLC40"; // [AnkerLC40,AnkerLC90,J5TactV2,InnovaX5]
    Component = "Plates"; // [Ball, BallClamp, Mount, Plates, Bracket]
    Layout = "Build"; // [Build, Show]
    Support = false;
    MountSupport = true;
    /* [Extrusion] */
    ThreadThick = 0.25; // [0.20, 0.25]
    ThreadWidth = 0.40; // [0.40]
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    Protrusion = 0.01; // [0.01, 0.1]
    HoleWindage = 0.2;
    /* [Fairing Mount] */
    ToeIn = 0; // inward from ahead
    Tilt = 20; // upward from forward (M=20 E=15)
    Roll = 0; // outward from top
    Shift = 0; // Finagle Constant for support ribs
    //- Screws *c
    /* [Hidden] */
    ID = 0;
    OD = 1;
    LENGTH = 2;
    /* [Screws and Inserts] */
    ClampInsert = [3.0,4.2,8.0];
    ClampScrew = [3.0,5.9,35.0]; // thread dia, head OD, screw length
    ClampScrewWasher = [3.0,6.75,0.5];
    ClampScrewNut = [3.0,6.1,4.0]; // nyloc nut
    /* [Hidden] */
    F_NAME = 0;
    F_GRIPOD = 1;
    F_GRIPLEN = 2;
    LightBodies = [
    ["AnkerLC90",26.6,48.0],
    ["AnkerLC40",26.6,55.0],
    ["J5TactV2",25.0,30.0],
    ["InnovaX5",22.0,55.0]
    ];
    //- Fairing Bracket
    // Magic numbers taken from the actual fairing mount
    /* [Hidden] */
    inch = 25.4;
    BracketHoleOD = 0.25 * inch; // 1/4-20 bolt holes
    BracketHoleOC = 1.0 * inch; // fairing hole spacing
    // usually 1 inch, but 15/16 on one fairing
    Bracket = [48.0,16.3,3.6 – 0.6]; // fairing bracket end plate overall size
    BracketHoleOffset = (3/8) * inch; // end to hole center
    BracketM = 3.0; // endcap arc height
    BracketR = (pow(BracketM,2) + pow(Bracket[1],2)/4) / (2*BracketM); // … radius
    //- Base plate dimensions
    Plate = [100.0,30.0,6*ThreadThick + Bracket[2]];
    PlateRad = Plate[1]/4;
    RoundEnds = true;
    echo(str("Base plate thick: ",Plate[2]));
    //- Select flashlight data from table
    echo(str("Flashlight: ",FlashName));
    FlashIndex = search([FlashName],LightBodies,1,0)[F_NAME];
    //- Set ball dimensions
    BallWall = 5.0; // max ball wall thickness
    echo(str("Ball wall: ",BallWall));
    BallOD = IntegerMultiple(LightBodies[FlashIndex][F_GRIPOD] + 2*BallWall,1.0);
    echo(str(" OD: ",BallOD));
    BallLength = IntegerMultiple(min(sqrt(pow(BallOD,2) – pow(LightBodies[FlashIndex][F_GRIPOD],2)) – 2*4*ThreadThick,
    LightBodies[FlashIndex][F_GRIPLEN]),1.0);
    echo(str(" length: ",BallLength));
    BallSides = 8*4;
    //- Set clamp ring dimensions
    ClampOD = 50;
    echo(str("Clamp OD: ",ClampOD));
    ClampLength = min(20.0,0.75*BallLength);
    echo(str(" length: ",ClampLength));
    ClampScrewOC = IntegerMultiple((ClampOD + BallOD)/2,1);
    echo(str(" screw OC: ",ClampScrewOC));
    //- Adjust hole diameter to make the size come out right
    module PolyCyl(Dia,Height,ForceSides=0) { // based on nophead's polyholes
    Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    FixDia = Dia / cos(180/Sides);
    cylinder(r=(FixDia + HoleWindage)/2,h=Height,$fn=Sides);
    }
    //- Fairing Bracket
    // This part of the fairing mount supports the whole flashlight mount
    // Centered on screw hole
    module Bracket() {
    linear_extrude(height=Bracket[2],convexity=2)
    difference() {
    translate([(Bracket[0]/2 – BracketHoleOffset),0,0])
    offset(delta=ThreadWidth)
    intersection() {
    square([Bracket[0],Bracket[1]],center=true);
    union() {
    for (i=[-1,0,1]) // middle circle fills gap
    translate([i*(Bracket[0]/2 – BracketR),0])
    circle(r=BracketR);
    }
    }
    circle(d=BracketHoleOD/cos(180/8),$fn=8); // dead center at the origin
    }
    }
    //- General plate shape
    // Centered on the hole for the fairing bracket
    module PlateBlank() {
    difference() {
    translate([BracketHoleOC,0,0])
    intersection() {
    translate([0,0,Plate[2]/2]) // select upper half of spheres
    cube(Plate,center=true);
    hull()
    if (RoundEnds)
    for (i=[-1,1])
    translate([i*(Plate[0]/2 – PlateRad),0,0])
    resize([Plate[1]/2,Plate[1],2*Plate[2]])
    sphere(r=PlateRad); // nice round ends!
    else
    for (i=[-1,1], j=[-1,1])
    translate([i*(Plate[0]/2 – PlateRad),j*(Plate[1]/2 – PlateRad),0])
    resize([2*PlateRad,2*PlateRad,2*Plate[2]])
    sphere(r=PlateRad); // nice round corners!
    }
    translate([2*BracketHoleOC,0,-Protrusion]) // punch screw holes
    PolyCyl(BracketHoleOD,2*Plate[2],8);
    translate([0,0,-Protrusion])
    PolyCyl(BracketHoleOD,2*Plate[2],8);
    }
    }
    //- Inner plate
    module InnerPlate() {
    difference() {
    PlateBlank();
    translate([0,0,Plate[2] – Bracket[2] + Protrusion]) // punch fairing bracket
    Bracket();
    }
    }
    //- Slotted ball around flashlight
    // Print with brim to ensure adhesion!
    module SlotBall() {
    NumSlots = 8*2; // must be even, half cut from each end
    SlotWidth = 2*ThreadWidth;
    SlotBaseThick = 10*ThreadThick; // enough to hold finger ends together
    RibLength = (BallOD – LightBodies[FlashIndex][F_GRIPOD])/2;
    translate([0,0,BallLength/2])
    difference() {
    intersection() {
    sphere(d=BallOD,$fn=2*BallSides); // basic ball
    cube([2*BallOD,2*BallOD,BallLength],center=true); // trim to length
    }
    translate([0,0,-LightBodies[FlashIndex][F_GRIPOD]])
    rotate(180/BallSides)
    PolyCyl(LightBodies[FlashIndex][F_GRIPOD],2*BallOD,BallSides); // remove flashlight body
    for (i=[0:NumSlots/2 – 1]) { // cut slots
    a=i*(2*360/NumSlots);
    SlotCutterLength = LightBodies[FlashIndex][F_GRIPOD];
    rotate(a)
    translate([SlotCutterLength/2,0,SlotBaseThick])
    cube([SlotCutterLength,SlotWidth,BallLength],center=true);
    rotate(a + 360/NumSlots)
    translate([SlotCutterLength/2,0,-SlotBaseThick])
    cube([SlotCutterLength,SlotWidth,BallLength],center=true);
    }
    }
    color("Yellow")
    if (Support) {
    for (i=[0:NumSlots-1]) {
    a = i*360/NumSlots;
    rotate(a + 180/NumSlots)
    translate([(LightBodies[FlashIndex][F_GRIPOD] + RibLength)/2 + ThreadWidth,0,BallLength/(2*4)])
    cube([RibLength,2*ThreadWidth,BallLength/4],center=true);
    }
    }
    }
    //- Clamp around flashlight ball
    module BallClamp() {
    BossLength = ClampScrew[LENGTH] – 1*ClampScrewWasher[LENGTH];
    BossOD = ClampInsert[OD] + 2*(6*ThreadWidth);
    difference() {
    union() {
    intersection() {
    sphere(d=ClampOD,$fn=BallSides); // exterior ball clamp
    cube([ClampLength,2*ClampOD,2*ClampOD],center=true); // aiming allowance
    }
    hull()
    for (j=[-1,1])
    translate([0,j*ClampScrewOC/2,-BossLength/2])
    cylinder(d=BossOD,h=BossLength,$fn=6);
    }
    sphere(d=(BallOD + 1*ThreadThick),$fn=BallSides); // interior ball with minimal clearance
    for (j=[-1,1]) {
    translate([0,j*ClampScrewOC/2,-ClampOD]) // screw clearance
    PolyCyl(ClampScrew[ID],2*ClampOD,6);
    translate([0,j*ClampScrewOC/2, // insert clearance
    -(BossLength/2 – ClampInsert[LENGTH] – 3*ThreadThick)])
    rotate([0,180,0])
    PolyCyl(ClampInsert[OD],2*ClampOD,6);
    translate([0,j*ClampScrewOC/2, // insert transition
    -(BossLength/2 – ClampInsert[LENGTH] – 3*ThreadThick)])
    cylinder(d1=ClampInsert[OD]/cos(180/6),d2=ClampScrew[ID],h=6*ThreadThick,$fn=6);
    }
    }
    color("Yellow")
    if (Support) { // ad-hoc supports for top half
    NumRibs = 6;
    RibLength = 0.5 * BallOD;
    RibWidth = 1.9*ThreadWidth;
    SupportOC = ClampLength / NumRibs;
    cube([ClampLength,RibLength,4*ThreadThick],center=true); // base plate for adhesion
    render(convexity=2*NumRibs)
    intersection() {
    sphere(d=BallOD – 0*ThreadWidth); // cut at inner sphere OD
    cube([ClampLength + 2*ThreadWidth,RibLength,BallOD],center=true);
    union() { // ribs for E-Z build
    for (j=[-1,0,1])
    translate([0,j*SupportOC,0])
    cube([ClampLength,RibWidth,1.0*BallOD],center=true);
    for (i=[0:NumRibs]) // allow NumRibs + 1 to fill the far end
    translate([i*SupportOC – ClampLength/2,0,0])
    rotate([0,90,0])
    cylinder(d=BallOD – 2*ThreadThick,
    h=RibWidth,$fn=BallSides,center=true);
    }
    }
    }
    }
    //- Mount between fairing plate and flashlight ball
    // Build with support for bottom of clamp screws!
    module Mount() {
    difference() {
    translate([-BracketHoleOC,0,0]) // put bracket center at origin
    PlateBlank();
    mirror([0,1,0])
    translate([0,0,-Protrusion])
    linear_extrude(height=3*ThreadThick + Protrusion) {
    translate([BracketHoleOC + 15,0,0])
    text(text=">>>",size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([-BracketHoleOC,8,0])
    text(text=str("Toe ",ToeIn),size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([-BracketHoleOC,-8,0])
    text(text=str("Tilt ",Tilt),size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([BracketHoleOC,8,0])
    text(text=str("Roll ",Roll),size=5,spacing=1.20,font="Arial",halign="center",valign="center");
    translate([-(BracketHoleOC + 15),0,0])
    rotate(90)
    text(text="KE4ZNU",size=4,spacing=1.20,font="Arial",halign="center",valign="center");
    }
    }
    rotate([0,ToeIn,Tilt])
    translate([0,0,ClampOD/2])
    rotate([-Roll,0,0])
    intersection() {
    translate([0,0,-ClampOD/2])
    cube([2*ClampOD,2*ClampOD,ClampOD],center=true);
    BallClamp();
    }
    color("Yellow")
    if (MountSupport) { // anchor outer corners at worst overhang
    RibWidth = 1.9*ThreadWidth;
    SupportOC = 0.1 * ClampLength;
    difference() {
    rotate([0,0,Tilt])
    translate([Shift,0,0])
    for (i=[-4.5,-2.5,0,2.0,4.5])
    translate([i*SupportOC – 0.0,0,(5 + Plate[2])/2])
    cube([RibWidth,0.7*ClampOD,(5 + Plate[2])],center=true);
    rotate([0,ToeIn,Tilt])
    translate([Shift,0,ClampOD/2])
    rotate([-Roll,0,0])
    sphere(d=ClampOD – 2*ThreadWidth,$fn=BallSides);
    }
    }
    }
    //- Build things
    if (Component == "Ball")
    SlotBall();
    if (Component == "BallClamp")
    if (Layout == "Show")
    BallClamp();
    else if (Layout == "Build") {
    Both = false;
    difference() {
    union() {
    translate([Both ? ClampLength : 0,0,0])
    BallClamp();
    if (Both)
    translate([-ClampLength,0,0])
    rotate([180,0,0])
    BallClamp();
    }
    translate([0,0,-ClampOD/2])
    cube([2*ClampOD,2*ClampOD,ClampOD],center=true);
    }
    }
    if (Component == "Mount")
    Mount();
    if (Component == "Plates") {
    translate([0,0.7*Plate[1],0])
    InnerPlate();
    translate([0,-0.7*Plate[1],0])
    PlateBlank();
    }
    if (Component == "Bracket")
    Bracket();

     

  • Tour Easy Daytime Running Light: Improved Ball Mount

    The original ball around the flashlight consisted of two identical parts joined with 2 mm screws and brass inserts:

    Flashlight Ball Mount - flattening fins
    Flashlight Ball Mount – flattening fins

    Providing enough space for the inserts made the ball bigger than it really ought be, so I designed a one-piece ball with “expansion joints” between the fingers:

    Fairing Flashlight Mount - Finger Ball - solid model
    Fairing Flashlight Mount – Finger Ball – solid model

    Having Slic3r put a 3 mm brim around the bottom almost worked. Adding a little support flange, then building with a brim, kept each segment upright and the whole affair firmly anchored.

    Fairing Flashlight Mount - Finger Ball - solid model - support fins
    Fairing Flashlight Mount – Finger Ball – solid model – support fins

    Those had to be part of the model, because I also wanted to anchor the perimeter threads to prevent upward warping. Worked great and cleanup was surprisingly easy: apply the flush cutter, introduce the ball to Mr Belt Sander, then rotate the ball around the flashlight wrapped with fine sandpaper to wear off the nubs.

    The joints between the fingers provide enough flexibility to expand slightly around the flashlight body:

    Flashlight Mount - finger ball
    Flashlight Mount – finger ball

    I made that one the same size as the original screw + insert balls to fit the original clamp, where it worked fine. The clamp ring applies enough pressure to the ball to secure the flashlight and prevent the ball from rotating unless you (well, I) apply more-than-incidental force.

    Then I shrank the ball to the flashlight diameter + 10 mm (= 5 mm thick at the equator) and reduced the size of the clamp ring accordingly, which made the whole mount much more compact:

    Flashlight Mount - LC40 - finger ball - side
    Flashlight Mount – LC40 – finger ball – side

    Here’s what the larger mount looks like in action:

    The flashlights allegedly puts out 400 lumen in a fairly tight beam. The fairings produce a much larger and brighter glint in full sunlight than the flashlights, so I think they’re about the right brightness.

    The OpenSCAD source code for the new ball as a GitHub Gist:

    //- Slotted ball around flashlight
    // Print with brim to ensure adhesion!
    module SlotBall() {
    NumSlots = 8*2; // must be even, half cut from each end
    SlotWidth = 2*ThreadWidth;
    SlotBaseThick = 10*ThreadThick; // enough to hold finger ends together
    RibLength = (BallOD – LightBodies[FlashIndex][F_GRIPOD])/2;
    translate([0,0,BallLength/2])
    difference() {
    intersection() {
    sphere(d=BallOD,$fn=2*BallSides); // basic ball
    cube([2*BallOD,2*BallOD,BallLength],center=true); // trim to length
    }
    translate([0,0,-LightBodies[FlashIndex][F_GRIPOD]])
    rotate(180/BallSides)
    PolyCyl(LightBodies[FlashIndex][F_GRIPOD],2*BallOD,BallSides); // remove flashlight body
    for (i=[0:NumSlots/2 – 1]) { // cut slots
    a=i*(2*360/NumSlots);
    SlotCutterLength = LightBodies[FlashIndex][F_GRIPOD];
    rotate(a)
    translate([SlotCutterLength/2,0,SlotBaseThick])
    cube([SlotCutterLength,SlotWidth,BallLength],center=true);
    rotate(a + 360/NumSlots)
    translate([SlotCutterLength/2,0,-SlotBaseThick])
    cube([SlotCutterLength,SlotWidth,BallLength],center=true);
    }
    }
    color("Yellow")
    if (Support) {
    for (i=[0:NumSlots-1]) {
    a = i*360/NumSlots;
    rotate(a + 180/NumSlots)
    translate([(LightBodies[FlashIndex][F_GRIPOD] + RibLength)/2 + ThreadWidth,0,BallLength/(2*4)])
    cube([RibLength,2*ThreadWidth,BallLength/4],center=true);
    }
    }
    }