The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Tag: CNC

Making parts with mathematics

  • Sewing Machine Lights: LED Strip Mount Solid Models

    Mary’s Sears Kenmore Model 158 sewing machine arm has a flat rear surface and a plastic plate on the front, so double-sided adhesive foam tape can hold a straight mount in place; we rejected putting strips under the arm to avoid snagging on the quilts as they pass by. So, with LEDs in hand, these are the mounts…

    LED strip lights must have strain relief for their wires, as our Larval Engineer discovered the hard way on her longboard ground lighting project, and I wanted nice endcaps to avoid snagging on the fabric, so the general idea was a quarter-round rod with smooth endcaps and a hole to secure the wire. Some experiments showed that the acrylic (?) LED encapsulation directed the light downward, thus eliminating the need for a shade.

    So, something like this will do for a first pass:

    LED Strip Light Mount - bottom view
    LED Strip Light Mount – bottom view

    The overall dimensions for the LED mounts:

    • Length: N x 25 mm, plus endcap radii
    • Front-to-back width: 10 mm to allow for strip variation and 1 mm protection
    • Top-to-bottom height: 12 mm to fit double-sided foam sticky squares
    • Wire channels: 3 mm diameter or square cross-section

    If there’s not enough light, I think a double-wide mount with two parallel LED strips would work.

    After a bit of screwing around with additive endcaps that produced catastrophically non-manifold solid models, I figured out the proper subtractive way to build the mounts: the endcaps actually define the overall shape of the mount.

    Start by placing a pair of spheroids, with radii matching the strip dimensions, so that their outer poles match the desired overall length:

    Strip Light Mount - end cap spheroids - whole
    Strip Light Mount – end cap spheroids – whole

    The north/south poles must face outward, so that the equal-angle facets along the equators match up with what will become the mount body: rotate the spheroids 90° around the Y axis. The centers lie at the ends of the LED segments; the model shown here has a single 25 mm segment.

    Then hack off three quadrants:

    Strip Light Mount - end cap spheroids
    Strip Light Mount – end cap spheroids

    That leaves two orange-segment shapes that define the endcaps:

    Strip Light Mount - end caps - shaped
    Strip Light Mount – end caps – shaped

    Here’s the key step that took me far too long to figure out. Shrinkwrapping the endcaps with the hull() function finesses the problem of matching the body facets to the endcap facets:

    Strip Light Mount - end caps - hull
    Strip Light Mount – end caps – hull

    Model the wire channels as positive volumes that will be subtracted from the mount. The Channels layout shows both channels separated by a short distance:

    Strip Light Mount - positive wire channels
    Strip Light Mount – positive wire channels

    The horizontal hexagons started as squares, but that looked hideous on the rounded endcaps.

    Seen from the bottom, the mount starts like this:

    Strip Light Mount - no wiring channels
    Strip Light Mount – no wiring channels

    Position and subtract a wire channel:

    Strip Light Mount - visible wire channel
    Strip Light Mount – visible wire channel

    Which leaves the final solid model as a single, manifold object:

    Strip Light Mount - complete
    Strip Light Mount – complete

    The module generating the mount takes three parameters: the number of LED segments and two string variables that determine whether to punch a channel in each endcap. Instantiate the module three times with suitable parameters to get a trio of LED mounts, all laid out for 3D printing:

    Strip Light Mount - build layout
    Strip Light Mount – build layout

    They built just exactly like those models would suggest; the M2 produces dependable results.

    The OpenSCAD source code:

    // LED Strip Lighting Brackets for Kenmore Model 158 Sewing Machine
    // Ed Nisley - KE4ZNU - February 2014
    
    Layout = "Strip";			// Build Show Channels Strip
    
    //- Extrusion parameters must match reality!
    //  Print with 2 shells and 3 solid layers
    
    ThreadThick = 0.20;
    ThreadWidth = 0.40;
    
    HoleWindage = 0.2;			// extra clearance
    
    Protrusion = 0.1;			// make holes end cleanly
    
    AlignPinOD = 1.70;			// assembly alignment pins: filament dia
    
    inch = 25.4;
    
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    
    //----------------------
    // Dimensions
    
    Segment = [25.0,10.0,3.0];		//  size of each LED segment
    
    WireChannel = 3.0;				// wire routing channel
    
    StripHeight = 12.0;				// sticky tape width
    StripSides = 8*4;
    
    DefaultLayout = [1,"Wire","NoWire"];
    
    EndCap = [(2*WireChannel + 1.0),Segment[1],StripHeight];	// radii of end cap spheroid
    EndCapSides = StripSides;
    
    CapSpace = 2.0;						// build spacing for endcaps
    BuildSpace = 1.5*Segment[1];		// spacing between objects on platform
    
    //----------------------
    // Useful routines
    
    module PolyCyl(Dia,Height,ForceSides=0) {			// based on nophead's polyholes
    
      Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    
      FixDia = Dia / cos(180/Sides);
    
      cylinder(r=(FixDia + HoleWindage)/2,
               h=Height,
               $fn=Sides);
    }
    
    module ShowPegGrid(Space = 10.0,Size = 1.0) {
    
      RangeX = floor(100 / Space);
      RangeY = floor(125 / Space);
    
    	for (x=[-RangeX:RangeX])
    	  for (y=[-RangeY:RangeY])
    		translate([x*Space,y*Space,Size/2])
    		  %cube(Size,center=true);
    
    }
    
    //-- The negative space used to thread wires into the endcap
    
    module MakeWireChannel(Which = "Left") {
    
    	HalfSpace = EndCap[0] * ((Which == "Left") ? 1 : -1);
    
    	render(convexity=2)
    	translate([0,EndCap[1]/3,0])
    		intersection() {
    			union() {
    				cube([2*WireChannel,WireChannel,EndCap[2]],center=true);
    				translate([-2*EndCap[0],0,EndCap[2]/2])
    					rotate([0,90,0]) rotate(180/6)
    						PolyCyl(WireChannel,4*EndCap[0],6);
    			}
    			translate([HalfSpace,0,(EndCap[2] - Protrusion)]) {
    				cube(2*EndCap,center=true);
    			}
    		}
    }
    
    //-- The whole strip, minus wiring channels
    
    module MakeStrip(Layout = DefaultLayout) {
    
    	BarLength = Layout[0] * Segment[0];				// central bar length
    
    	hull()
    		difference() {
    			for (x = [-1,1])						// endcaps as spheroids
    				translate([x*BarLength/2,0,0])
    					resize(2*EndCap) rotate([0,90,0]) sphere(1.0,$fn=EndCapSides);
    			translate([0,0,-EndCap[2]])
    				cube([2*BarLength,3*EndCap[1],2*EndCap[2]],center=true);
    			translate([0,-EndCap[1],0])
    				cube([2*BarLength,2*EndCap[1],3*EndCap[2]],center=true);
    		}
    
    }
    
    //-- Cut wiring channels out of strip
    
    module MakeMount(Layout = DefaultLayout) {
    
    	BarLength = Layout[0] * Segment[0];
    
    	difference() {
    		MakeStrip(Layout);
    		if (Layout[1] == "Wire")
    			translate([BarLength/2,0,0])
    				MakeWireChannel("Left");
    		if (Layout[2] == "Wire")
    			translate([-BarLength/2,0,0])
    				MakeWireChannel("Right");
    	}
    }
    
    //- Build it
    
    ShowPegGrid();
    
    if (Layout == "Channels") {
    	translate([ EndCap[0],0,0]) MakeWireChannel("Left");
    	translate([-EndCap[0],0,0]) MakeWireChannel("Right");
    }
    
    if (Layout == "Strip") {
    	MakeStrip(DefaultLayout);
    }
    
    if (Layout == "Show") {
    	MakeMount(DefaultLayout);
    }
    
    if (Layout == "Build") {
    
    	translate([0,BuildSpace,0]) MakeMount([1,"Wire","Wire"]);		// rear left side, vertical
    	translate([0,0,0]) MakeMount([5,"Wire","NoWire"]);				// rear top, across arm
    	translate([0,-BuildSpace,0]) MakeMount([6,"NoWire","Wire"]);	// front top, across arm
    }
    

    The original design doodles, which bear a vague resemblance to the final mounts:

    LED Strip Light Mounts - Original Design Sketches
    LED Strip Light Mounts – Original Design Sketches

    The little snood coming out of the top would hide a wire going through a hole drilled in the capital-S of “Sears” on the front panel, but I came to my senses long before implementing that idea…

  • Thing-O-Matic Y-axis Idler Support Bracket: Oops

    The STL file from CampbellsBot’s Y-Axis Idler Support Bracket printed without incident (admittedly, on the M2):

    Thing-O-Matic Y-axis Idler Support Bracket
    Thing-O-Matic Y-axis Idler Support Bracket

    Come to find out that Makerbot changed the spacing between the Y-axis rod and the idler bolt, so it doesn’t fit the TOM286. I could fire up the Token Windows Box, install Sketchup, modify the model, rebuild and clean up the STL, and try again, but it’s easier to just give up. The TOM286 has worked fine so far, so maybe this isn’t really needed.

    Ah, well, it’s another show-n-tell doodad…

  • Can Opener Gear Rebuild

    Cleaning up the wrecked gears on the can opener made it painfully obvious that I had to conjure at least one gear to get the poor thing working again:

    Can opener - gears and cutters
    Can opener – gears and cutters

    Fortunately, those are more in the line of cogs, rather than real gears, so I decided a crude hack would suffice: drill a pattern of holes to define the openings between the teeth, file / grind the teeth reasonably smooth, and then tweak the shape to suit.

    Fitting some small number-size drills between the remains of the teeth showed:

    • A #52 = 52.0 mil = 1.32 mm drill matched the root curvature
    • A #28 = 140.5 mil = 3.57 mm drill was tangent to the small drill and the tooth walls

    Neither of those count as precision measurements, particularly given the ruined teeth, but they’re close enough for a first pass.

    The OEM drive gear (on the right) has the teeth bent upward to mate with the cutter gear (on the left), but under normal gripping force, the teeth don’t mesh securely and tend to slide over / under / past each other. However, if I were to cut the drive gear from a metal sheet that’s thick enough to engage both the root and the crest of the cutter gear, that should prevent all the slipping & sliding. Some eyeballometric guesstimation suggested 2.5 mm would be about right and the Basement Laboratory Stockpile produced a small slab of 100 mil = 2.54 mm aluminum sheet.

    However, the center part of the gear must have the same thickness as the OEM gear to keep the drive wheel at the same position relative to the cutter blade, which means a bit of pocket milling. I have some small ball burrs that seemed like they might come in handy.

    A recent thread on the LinuxCNC mailing list announced Bertho Stultien’s gcmc, the G-Code Meta Compiler, and this looked like a golden opportunity to try it out. Basically, gcmc lets you write G-Code programs in a C-like language that eliminates nearly all the horrendous syntactic noise of raw G-Code. I like it a lot and you’ll be seeing more of it around here…

    The gcmc source code, down below, include a function that handles automatic tool height probing, using that simple white-goods switch. The literal() function emits whatever you hand it as text for the G-Code file, which is how you mechanize esoteric commands that gcmc doesn’t include in its repertoire. It’s basically the same as my bare G-Code probe routine, but now maintains a state variable that eliminates the need for separate first-probe and subsequent-probe entry points.

    One point that tripped me up, even though I should know better: because gcmc is a compiler, it can’t read G-Code parameters that exist only when LinuxCNC (or whatever) is interpreting the G-Code. You can write parameters with values computed at compile time, but you can’t read and process them in the gcmc program.

    Anyhow, the first pass produced an array of holes that, as I fully expected, weren’t quite right:

    Can opener gear - first hole pattern
    Can opener gear – first hole pattern

    The second pass got the root and middle holes tangent to each other:

    Can opener gear - second hole pattern
    Can opener gear – second hole pattern

    It also ran a center drill pass for those tiny little holes to prevent their drill from wandering about. The other drills are about the same size as the center drill, so they’re on their own.

    The rosette around the central hole comes from sweeping the burr in a dozen overlapping circles tangent to the outer diameter, then making a cleanup pass around the OD:

    Can opener gear - 12 leaf rosette
    Can opener gear – 12 leaf rosette

    Incidentally, that stray hole between the two patterns came from the aluminum sheet’s previous life, whatever it may have been. There are three other holes, two of which had flat washers taped to them, so your guess is as good as mine. That’s my story and I’m sticking with it.

    Introducing the sheet to Mr Bandsaw and cutting through the outer ring produced a bizarre snowflake:

    Can opener gear - cut out
    Can opener gear – cut out

    Cutting off the outer ring of holes turned the incipient gear body into a ragged shuriken:

    Can opener gear - isolated
    Can opener gear – isolated

    A few minutes of increasingly deft Dremel cutoff wheel work, poised on the bench vise over the shopvac nozzle to capture the dust, produced a credible gear shape:

    Can opener gear - first pass
    Can opener gear – first pass

    Iterating through some trial fits, re-grinds, and general fiddling showed that the center pocket was too shallow. The cutter wheel should slightly clear the drive wheel, but it’s an interference fit:

    Can opener gear - trial fit
    Can opener gear – trial fit

    Which, of course, meant that I had to clamp the [mumble] thing back in the Sherline and re-mill the pocket. The trick is to impale it on the wrong end of a suitable drill, clamp it down, and touch off that spot as the origin:

    Can opener gear - re-centering
    Can opener gear – re-centering

    I took the opportunity to switch to a smaller ball and make 16 little circles to clear the pocket:

    Can Opener Gear - 16 leaf rosette
    Can Opener Gear – 16 leaf rosette

    Now that’s better:

    Can opener gear - deeper pocket
    Can opener gear – deeper pocket

    Another trial fit showed that everything ended up in the right place:

    Can opener gear - final fit
    Can opener gear – final fit

    I gave it a few cranks, touched up any cogs that clashed with the (still misshapen) cutter gear, applied it to a randomly chosen can, and it worked perfectly:

    • Squeeze the levers to easily punch through the lid
    • Crankety crank on the handle, while experiencing none of the previous drama
    • The severed lid falls into the can

    Which is exactly how it’s supposed to work. What’s so hard about that?

    What you can’t see in that picture is the crest of the lowest cutter gear tooth fitting just above the bottom of the drive gear root. Similarly, the crest of the highest drive gear tooth remains slightly above the cutter root. That means the cutter gear teeth always engage the drive gear, there’s no slipping & sliding, and it’s all good.

    Aluminum isn’t the right material for a gear-like object meshed with a steel counterpart, but it’s easy to machine on a Sherline. I’ll run off a few more for show-n-tell and, if when this one fails, I’ll have backup.

    The gcmc source code:

    // Can opener drive gears
    //	Ed Nisley KE4ZNU - February 2014
    //	Sherline CNC mill with tool height probe
    //	XYZ touchoff origin at center on fixture surface
    
    DO_DRILLCENTER	= 1;
    DO_MILLCENTER	= 1;
    DO_DRILLINNER	= 1;
    DO_DRILLOUTER	= 1;
    DO_DRILLTIPS	= 1;
    
    //----------
    // Overall dimensions
    
    GearThick = 2.54;			// overall gear thickness
    GearCenterThick = 1.75;		// thickness of gear center
    
    GearTeeth = 12;				// number of teeth!
    ToothAngle = 360deg/GearTeeth;
    GearOD = 22.0;				// tooth tip
    GearID = 13.25;				// tooth root
    
    SafeZ = 20.0;				// guaranteed to clear clamps
    TravelZ = GearThick + 1.0;	// guaranteed to clear plate
    
    //----------
    // Tool height probe
    //	Sets G43.1 tool offset in G-Code, so our Z=0 coordinate always indicates the touchoff position
    
    ProbeInit = 0;					// 0 = not initialized, 1 = initialized
    ProbeSpeed = 400.0mm;
    ProbeRetract = 1.0mm;
    
    PROBE_STAY = 0;					// remain at probe station
    PROBE_RESTORE = 1;				// return to previous location after probe
    
    function ProbeTool(RestorePos) {
    
    local WhereWasI;
    
    	WhereWasI = position();
    
    	if (ProbeInit == 0) {		// probe with existing tool to set Z=0 as touched off
    		ProbeInit++;
    		literal("#<_Probe_Speed> = ",to_none(ProbeSpeed),"\n");
    		literal("#<_Probe_Retract> = ",to_none(ProbeRetract),"\n");
    		literal("#<_ToolRefZ> = 0.0 \t; prepare for first probe\n");
    		ProbeTool(PROBE_STAY);
    		literal("#<_ToolRefZ> = #5063 \t; save touchoff probe point\n");
    		literal("G43.1 Z0.0 \t; set zero offset = initial touchoff\n");
    	}
    	elif (ProbeInit == 1) {		// probe with new tool, adjust offset accordingly
    		literal("G49 \t; clear tool length comp\n");
    		literal("G30 \t; move over probe switch\n");
    		literal("G59.3 \t; use coord system 9\n");
    		literal("G38.2 Z0 F#<_Probe_Speed> \t; trip switch on the way down\n");
    		literal("G0 Z[#5063 + #<_Probe_Retract>] \t; back off the switch\n");
    		literal("G38.2 Z0 F[#<_Probe_Speed> / 10] \t; trip switch slowly\n");
    		literal("#<_ToolZ> = #5063 \t; save new tool length\n");
    		literal("G43.1 Z[#<_ToolZ> - #<_ToolRefZ>] \t; set new length\n");
    		literal("G54 \t; return to coord system 0\n");
    		literal("G30 \t; return to safe level\n");
    	}
    	else {
    		error("*** ProbeTool sees invalid ProbeInit: ",ProbeInit);
    		comment("debug,*** ProbeTool sees invalid ProbeInit: ",ProbeInit);
    		ProbeInit = 0;
    	}
    
    	if (RestorePos == PROBE_RESTORE) {
    		goto(WhereWasI);
    	}
    
    }
    
    //----------
    // Utility functions
    
    function WaitForContinue(MsgStr) {
    	comment(MsgStr);
    	pause();
    }
    
    function CueToolChange(MsgStr) {
    	literal("G0 Z" + SafeZ + "\n");
    	literal("G30\n");
    	WaitForContinue(MsgStr);
    }
    
    function ToolChange(Info,Name) {
    	CueToolChange("msg,Insert " + to_mm(Info[TOOL_DIA]) + " = " + to_in(Info[TOOL_DIA]) + " " + Name);
    	ProbeTool(PROBE_STAY);
    
    	WaitForContinue("msg,Set spindle to " + Info[TOOL_SPEED] + " rpm");
    	feedrate(Info[TOOL_FEED]);
    }
    
    function GetAir() {
    	goto([-,-,SafeZ]);
    }
    
    //-- compute drill speeds & feeds based on diameter
    //		rule of thumb is 100 x diameter at 3000 rpm for real milling machines
    //		my little Sherline's Z axis can't produce enough thrust for that!
    
    MaxZFeed = 600.0mm;				// fastest possible Z feed
    
    TOOL_DIA = 0;					// Indexes into DrillParam() result
    TOOL_SPEED = 1;					//  spindle RPM
    TOOL_FEED = 2;					//	linear feed
    TOOL_TIP = 3;					//	length of 118 degreee drill tip
    
    function DrillParam(Dia) {
    local RPM,Feed,Tip,Data,Derating;
    
    	Derating = 0.25;			// derate from (100 x diameter) max feed
    
    	RPM = 3000.0;				// default 3 k rpm
    
    	Feed = Derating * (100.0 * Dia);
    	if (Feed > MaxZFeed) {
    		RPM *= (MaxZFeed / Feed);	//  scale speed downward to fit
    		Feed = MaxZFeed;
    	}
    
    	Tip = (Dia/2) * tan(90deg - 118deg/2);
    	Data = [Dia,RPM,Feed,Tip];
    
    	message("DrillParam: ",Data);
    	return Data;
    }
    
    //-- peck drilling cycle
    
    function PeckDrill(Endpt,Retract,Peck) {
    	literal("G83 X",to_none(Endpt[0])," Y",to_none(Endpt[1])," Z",to_none(Endpt[2]),
    			" R",to_none(Retract)," Q",to_none(Peck),"\n");
    }
    
    //----------
    // Make it happen
    
    literal("G99\t;  retract to R level, not previous Z\n");
    
    WaitForContinue("msg,Verify: G30 position in G54 above tool change switch?");
    
    WaitForContinue("msg,Verify: fixture origin XY touched off at center of gear?");
    
    WaitForContinue("msg,Verify: Z touched off on top surface at " + GearThick + "?");
    ProbeTool(PROBE_STAY);
    
    //-- Drill center hole
    
    if (DO_DRILLCENTER) {
    
    	DrillData = DrillParam(5.0mm);
    	ToolChange(DrillData,"drill");
    
    	goto([0,0,-]);
    	goto([-,-,TravelZ]);
    
    	drill([0,0,-1.5*DrillData[TOOL_TIP]],TravelZ,DrillData[TOOL_DIA]);
    	GetAir();
    
    }
    
    //-- Drill inner ring
    
    if (DO_DRILLINNER) {
    
    	DrillData = DrillParam(1.32mm);
    
    	RingRadius = GearID/2.0 + DrillData[TOOL_DIA]/2.0;		// center of inner ring holes
    	HolePosition = [RingRadius,0mm,-1.5*DrillData[TOOL_TIP]];
    
    //	but first, center-drill to prevent drifting
    
    	CDData = DrillParam(1.00mm);			// pretend it's a little drill
    	CDData[TOOL_FEED] = 100mm;				//  ... use faster feed
    
    	CDPosition = HolePosition;				// use center drill coordinates
    	CDPosition[2] = GearThick - 0.25mm;		//  ... just below surface
    
    	ToolChange(CDData,"center drill");
    
    	goto([0,0,-]);
    	goto([-,-,TravelZ]);
    
    	for (Tooth = 0 ; Tooth < GearTeeth ; Tooth++) {
    		drill(CDPosition,TravelZ,2*TravelZ);		// large increment ensures one stroke
    		CDPosition = rotate_xy(CDPosition,ToothAngle);
    	}
    
    //	now drill the holes
    
    	ToolChange(DrillData,"drill");
    
    	goto([0,0,-]);
    	goto([-,-,TravelZ]);
    
    	for (Tooth = 0 ; Tooth < GearTeeth ; Tooth++) {
    		PeckDrill(HolePosition,TravelZ,DrillData[TOOL_DIA]);
    		HolePosition = rotate_xy(HolePosition,ToothAngle);
    	}
    
    	GetAir();
    
    }
    
    //-- Mill center recess
    
    if (DO_MILLCENTER) {
    
    	MillData = [4.50mm,3000,250.0mm,0.0mm];			// spherical ball burr
    
    	Delta = GearThick - GearCenterThick;							// depth to be milled away
    	Inset = sqrt(2.0*Delta*(MillData[TOOL_DIA]/2) - pow(Delta,2));	// toll axis to milled edge
    
    	ToolChange(MillData,"ball burr");
    
    	goto([0,0,-]);							// above central hole
    	goto([0,0,GearThick]);					// vertically down to flush with surface
    	move([0,0,GearCenterThick]);			// into gear blank
    
    	for (Angle = 0.0deg; Angle < 360.0deg; Angle+=360.0deg/16) {	// clear interior
    		circle_cw((GearID/2 - Inset)/2,Angle);
    	}
    
    	move_r([(GearID/2 - Inset),0.0,0.0]);							// clean rim
    	circle_ccw([0.0,0.0,GearCenterThick],2);
    
    	GetAir();
    
    }
    
    //-- Drill outer ring
    
    if (DO_DRILLOUTER) {
    
    	RingRadius += DrillData[TOOL_DIA]/2;		// at OD of inner ring holes
    
    	DrillData = DrillParam(3.18mm);
    	RingRadius += DrillData[TOOL_DIA]/2.0;		// center of outer ring holes
    	HolePosition = [RingRadius,0mm,-1.5*DrillData[TOOL_TIP]];
    
    	ToolChange(DrillData,"drill");
    
    	for (Tooth = 0 ; Tooth < GearTeeth ; Tooth++) {
    		PeckDrill(HolePosition,TravelZ,DrillData[TOOL_DIA]);
    		HolePosition = rotate_xy(HolePosition,ToothAngle);
    	}
    
    	GetAir();
    
    }
    
    //-- Drill to locate gear tooth tip end
    
    if (DO_DRILLTIPS) {
    
    	DrillData = DrillParam(4.22mm);
    
    	RingRadius = GearOD/2.0 + DrillData[TOOL_DIA]/2.0;		// tangent to gear tooth tip
    	HolePosition = [RingRadius,0mm,-1.5*DrillData[TOOL_TIP]];
    	HolePosition = rotate_xy(HolePosition,ToothAngle/2);	// align to tooth
    
    	ToolChange(DrillData,"drill");
    
    	for (Tooth = 0 ; Tooth < GearTeeth ; Tooth++) {
    		PeckDrill(HolePosition,TravelZ,DrillData[TOOL_DIA]);
    		HolePosition = rotate_xy(HolePosition,ToothAngle);
    	}
    
    	GetAir();
    
    }
    
    literal("G30\n");
    comment("msg,Done!");
    

    The original doodle that suggested the possibility:

    Can Opener Gears - Doodle 1
    Can Opener Gears – Doodle 1

    The chord equation at the bottom shows how to calculate the offset for the ball burr, although it turns out there’s no good way to measure the cutting diameter of the burr and it’s not really spherical anyway.

    A more detailed doodle with the key line at a totally bogus angle:

    Can Opener Gears - Doodle 2
    Can Opener Gears – Doodle 2

    The diagram in the lower right corner shows how you figure the length of the tip on a 118° drill point, which you add to the thickness of the plate in order to get a clean hole.

  • Chocolate Molds: Software Stack

    This derives directly from the cookie cutter / press stack, so check that series for more background and explanation. Some height map thoughts and preliminary doodling led up to this.

    We start with a tiny grayscale image file that defines the height of each point in the mold:

    Tux
    Tux

    Feed that file into a Bash script:

    ./MakeMold.sh Tux.png

    And a corresponding STL file pops out:

    Tux positive mold - solid model - oblique
    Tux positive mold – solid model – oblique

    The MakeMold Bash script orchestrates the whole thing:

    #!/bin/bash
    DotsPerMM=3.0
    MapHeight=5
    ImageName="${1%%.*}"
    rm ${ImageName}_* ${ImageName}-positive.stl
    echo Normalize and prepare grayscale image...
    convert $1 -type Grayscale -depth 8 -trim +repage -flip +set comment ${ImageName}_prep.png
    echo Create PGM files...
    convert ${ImageName}_prep.png -compress none ${ImageName}_map.pgm
    convert ${ImageName}_prep.png -white-threshold 1 -compress none ${ImageName}_plate.pgm
    echo Create height map data files...
    ImageX=`identify -format '%[fx:w]' ${ImageName}_map.pgm`
    ImageY=`identify -format '%[fx:h]' ${ImageName}_map.pgm`
    echo Width: ${ImageX} x Height: ${ImageY}
    cat ${ImageName}_map.pgm   | tr -s ' \012' '\012' | tail -n +5 | column -x -c $((8*$ImageX)) > ${ImageName}_map.dat
    cat ${ImageName}_plate.pgm | tr -s ' \012' '\012' | tail -n +5 | column -x -c $((8*$ImageX)) > ${ImageName}_plate.dat
    echo Create mold positive...
    time openscad -D fnPlate=\"${ImageName}_plate.dat\" \
    -D fnMap=\"${ImageName}_map.dat\" -D Height=$MapHeight \
    -D ImageX=$ImageX -D ImageY=$ImageY -D DotsPerMM=$DotsPerMM \
    -o ${ImageName}-positive.stl MoldPositive.scad
    

    The first convert normalizes the grayscale file and produces a PNG file in a standard format.

    The next two convert operations translate that PNG file into uncompressed PGM files with the data as ASCII text required by OpenSCAD’s surface() function. It’s not in the proper format, however, so a few lines of Bash-fu rearrange the data into DAT files; the extension is arbitrary.

    Then OpenSCAD eats those files along with a bunch of configuration settings and spits out a solid model of the positive mold in STL format.

    The MakePositive.scad OpenSCAD source code:

    // Mold positive pattern from grayscale height map using Minkowski sum
    // Ed Nisley KE4ZNU - February 2014 - adapted from cookie press, added alignment pins
    
    //-----------------
    // Mold files
    
    fnMap = "SqWr_map.dat";					// override with -D 'fnMap="whatever.dat"'
    fnPlate = "SqWr_plate.dat";				// override with -D 'fnPlate="whatever.dat"'
    
    DotsPerMM = 3.0;						// overrride with -D DotsPerMM=number
    
    MapHeight = 5.0;						// overrride with -D MapHeight=number
    
    ImageX = 100;							// overrride with -D ImageX=whatever
    ImageY = 100;
    
    MapScaleXYZ = [1/DotsPerMM,1/DotsPerMM,MapHeight/255];
    PlateScaleXYZ = [1/DotsPerMM,1/DotsPerMM,1.0];
    
    echo("Press File: ",fnMap);
    echo("Plate File: ",fnPlate);
    
    echo(str("ImageX:",ImageX," ImageY: ", ImageY));
    echo(str("Map Height: ",MapHeight));
    echo(str("Dots/mm: ",DotsPerMM));
    echo(str("Scale Map: ",MapScaleXYZ,"  Plate: ",PlateScaleXYZ));
    
    //- Extrusion parameters - must match reality!
    
    ThreadThick = 0.25;
    ThreadWidth = 2.0 * ThreadThick;
    
    //- Buid parameters
    
    PlateThick = IntegerMultiple(1.0,ThreadThick);		// solid plate under press relief
    
    PinOD = 1.75;				// locating pin diameter
    PinDepth = PlateThick;		//  ... depth into bottom surface = total length/2
    PinOC = 20.0;				// spacing within mold item
    
    echo(str("Pin depth: ",PinDepth," spacing: ",PinOC));
    
    //- Useful info
    
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    
    HoleWindage = 0.2;
    
    Protrusion = 0.1;						// make holes & unions work correctly
    
    MaxConvexity = 5;						// used for F5 previews in OpenSCAD GUI
    
    ZFuzz = 0.2;							// numeric chaff just above height map Z=0 plane
    
    //-----------------
    // Import plate height map, slice off a slab to define outline
    
    module Slab(Thick=1.0) {
    	intersection() {
    		translate([0,0,Thick/2])
    			cube([2*ImageX,2*ImageY,Thick],center=true);
    		scale(PlateScaleXYZ)
    			difference() {
    				translate([0,0,-ZFuzz])
    					surface(fnPlate,center=true,convexity=MaxConvexity);
    				translate([0,0,-1])
    					cube([2*ImageX,2*ImageY,2],center=true);
    			}
    	}
    }
    
    //- Put peg grid on build surface
    
    module ShowPegGrid(Space = 10.0,Size = 1.0) {
    
    	Range = floor(50 / Space);
    
    	for (x=[-Range:Range])
    	  for (y=[-Range:Range])
    		translate([x*Space,y*Space,Size/2])
    			%cube(Size,center=true);
    }
    
    //-- convert cylinder to low-count polygon
    
    module PolyCyl(Dia,Height,ForceSides=0) {			// based on nophead's polyholes
    
      Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    
      FixDia = Dia / cos(180/Sides);
    
      cylinder(r=(FixDia + HoleWindage)/2,
               h=Height,
    	   $fn=Sides);
    }
    
    //-- Locating pin hole with glue recess
    //  Default length is two pin diameters on each side of the split
    
    module LocatingPin(Dia=PinOD,Len=0.0) {
    
    	PinLen = (Len != 0.0) ? Len : (4*Dia);
    
    	translate([0,0,-ThreadThick])
    		PolyCyl((Dia + 2*ThreadWidth),2*ThreadThick,4);
    
    	translate([0,0,-2*ThreadThick])
    		PolyCyl((Dia + 1*ThreadWidth),4*ThreadThick,4);
    
    	translate([0,0,-(Len/2 + ThreadThick)])
    		PolyCyl(Dia,(Len + 2*ThreadThick),4);
    
    }
    
    //- Build it
    
    //ShowPegGrid();
    
    echo("Building mold");
    union() {
    	difference() {
    		Slab(PlateThick + Protrusion);
    		for (i=[-1,1])
    			translate([0,i*PinOC/2,0])
    				rotate(180/4) LocatingPin(Len=2*PinDepth);
    	}
    	translate([0,0,PlateThick])							// cookie press height map
    		scale(MapScaleXYZ)
    		difference() {
    			translate([0,0,-ZFuzz])
    				surface(fnMap,center=true,convexity=MaxConvexity);
    			translate([0,0,-1])
    				cube([2*ImageX,2*ImageY,2],center=true);
    		}
    }
    
    

    The molds have alignment pin holes in the back:

    Tux positive mold - solid model - backside
    Tux positive mold – solid model – backside

    That match up with the holes in a baseplate:

    SqWr Positive Mold Framework - 2x3 pinsThe plate holds the molds in place, perhaps with tapeless sticky, while you’re slathering silicone goop to make the negative mold:

    Tux Positive Mold Framework - 2x3 array
    Tux Positive Mold Framework – 2×3 array

    As you might expect, the OpenSCAD file that generates the plate-with-holes can also embed the positive molds atop the plate, so you could get a solid (well, infilled at 20%) chunk of plastic without attaching the molds. I’d rather do the plate separately from the molds, so you can recycle the plate for many different molds. Your mileage may vary.

    The Positive Mold Framework.scad OpenSCAD source code:

    // Positive mold framework for chocolate slabs
    // Ed Nisley - KE4ZNU - January 2014
    
    Layout = "FramePins";		// FramePins FrameMolds Pin
    
    //- Extrusion parameters must match reality!
    //  Print with 2 shells and 3 solid layers
    
    ThreadThick = 0.20;
    ThreadWidth = 0.40;
    
    Protrusion = 0.1;			// make holes end cleanly
    
    HoleWindage = 0.2;
    
    //----------------------
    // Dimensions
    
    FileName = "Tux-positive.stl";	// overrride with -D
    
    Molds = [2,3];					// count of molds within framework
    
    MoldOC = [40.0,45.0];			// on-center spacing of molds
    MoldSlab = 1.0;					// thickness of slab under molds
    
    BaseThick = 5.0;
    
    BaseSize = [(Molds[0]*MoldOC[0] + 0),(Molds[1]*MoldOC[1] + 0),BaseThick];
    echo(str("Overall base: ",BaseSize));
    
    PinOD = 1.75;					// locating pin diameter
    PinLength = 2.0;				//  ... total length
    PinOC = 20.0;				// spacing within mold item
    
    //----------------------
    // Useful routines
    
    //- Put peg grid on build surface
    
    module ShowPegGrid(Space = 10.0,Size = 1.0) {
    
    	RangeX = floor(100 / Space);
    	RangeY = floor(125 / Space);
    
    	for (x=[-RangeX:RangeX])
    		for (y=[-RangeY:RangeY])
    			translate([x*Space,y*Space,Size/2])
    			%cube(Size,center=true);
    
    }
    
    module PolyCyl(Dia,Height,ForceSides=0) {			// based on nophead's polyholes
    
      Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    
      FixDia = Dia / cos(180/Sides);
    
      cylinder(r=(FixDia + HoleWindage)/2,
               h=Height,
    	   $fn=Sides);
    }
    
    // Locating pin hole with glue recess
    //  Default length is two pin diameters on each side of the split
    
    module LocatingPin(Dia=PinOD,Len=0.0) {
    
    	PinLen = (Len != 0.0) ? Len : (4*Dia);
    
    	translate([0,0,-ThreadThick])
    		PolyCyl((Dia + 2*ThreadWidth),2*ThreadThick,4);
    
    	translate([0,0,-2*ThreadThick])
    		PolyCyl((Dia + 1*ThreadWidth),4*ThreadThick,4);
    
    	translate([0,0,-(Len/2 + ThreadThick)])
    		PolyCyl(Dia,(Len + 2*ThreadThick),4);
    
    }
    
    module LocatingPins(Length) {
    	for (i=[-1,1])
    	translate([0,i*PinOC/2,0])
    		rotate(180/4)
    		LocatingPin(Len=Length);
    }
    
    //-- import a single mold item
    
    module MoldItem() {
    	import(FileName,convexity=10);
    }
    
    //-- Overall frame shape
    
    module Frame() {
    
    //	translate([0,0,BaseSize[2]/2])		// platform under molds
    //		cube(BaseSize,center=true);
    
    	difference() {
    		hull()
    			for (i=[-1,1], j=[-1,1])
    				translate([i*BaseSize[0]/2,j*BaseSize[1]/2,0])
    					sphere(r=BaseThick);
    		translate([0,0,-BaseThick])
    			cube(2*BaseSize,center=true);
    	}
    
    }
    
    //- Build it
    
    ShowPegGrid();
    
    if (Layout == "Pin")
    	LocatingPin(Len=PinLength);
    
    if (Layout == "Frame")
    	Frame();
    
    if (Layout == "FramePins")
    	difference() {
    		Frame();
    
    		translate([-MoldOC[0]*(Molds[0] - 1)/2,-MoldOC[1]*(Molds[1] - 1)/2,0])
    			for (i=[0:Molds[0]-1],j=[0:Molds[1]-1])
    				translate([i*MoldOC[0],j*MoldOC[1],BaseSize[2]])
    					LocatingPins(BaseThick);
    	}
    
    if (Layout == "FrameMolds") {
    	Frame();
    	translate([-MoldOC[0]*(Molds[0] - 1)/2,-MoldOC[1]*(Molds[1] - 1)/2,0])
    		for (i=[0:Molds[0]-1],j=[0:Molds[1]-1])
    			translate([i*MoldOC[0],j*MoldOC[1],BaseThick - MoldSlab + Protrusion])
    			MoldItem();
    }
    

    And then it’s time to pour some chocolate… which someone else knows how to do much better than I!

  • Chocolate Mold: Image Preparation Checklist

    Start with a monochrome image:

    Tux-Shirt
    Tux-Shirt

    A bit of tinkering produce a height map image:

    Tux Mold - Height Map - large
    Tux Mold – Height Map – large

    I picked a 3.0 pixel/mm scale factor, so a 33 mm mold covers only 100 pixels. That image is 1100 mm tall and will be reduced by a factor of 10 to the final image size: this is not the place for fine detail and fancy lettering!

    The conversion process assumes you’ll handle the Z axis scaling yourself, so the script no longer normalizes the gray levels. If you select gray levels using HSV, the V slider gives you a direct reading in percent-of-maximum thickness; Tux varies from V = 80 to 100, so he’s pretty much bas relief.

    The border around the image must be 0 = black and will be stripped from the final mold. That’s why Tux doesn’t turn into a bird served on a rectangular platter.

    Because this is a mold, its edges must have some draft, which means the outline must shade from black to whatever gray represents the interior of the mold. Do this:

    • Trace the outline using the Scissors Select tool = snap to high-contrast outer edge
    • Create / go to a new layer filled with whatever gray you want for the interior (V = 80 here)
    • Select → Grow the selection by 60 pixels (on a 1000×1100 image)
    • Select → Invert to select the exterior of the outline
    • Bucket fill the exterior with 0 = black
    • Select  → Invert to select the interior of the outline again
    • Select → Border: Add a 30 pixel border to the selection with the “Feather border” option
    • Bucket fill the border with 0 = black
    • Unselect and you have a layer with a nice graduation around the mold

    Which looks like this with V=80 gray inside:

    Tux Mold - Height Map - outline gradient
    Tux Mold – Height Map – outline gradient

    The 30 pixel feathered border, scaled by the 10× reduction, means the edge of the mold goes from 0 = black to the interior in about 3 pixel / (3 pixel/mm) = 1 mm. If the interior is 255 = white at 7 mm, the draft angle is arctan 1/7 = 8°, which is probably about right for the deepest part of the mold. The edge of the Tux mold is V = 80 (or about 200 gray), so it’s at 0.8 × 7 mm = 5.6 mm and the draft angle is arctan 1/5.6 = 10°.

    Inside the mold, anything goes, but you should avoid 0 = black levels so that the alignment pins don’t poke through the mold. Any 255 = 100 V = white levels will be the maximum mold thickness, which is 7 mm for the molds you see here and that may be somewhat too thick for a chocolate treat. It is really hard to maintain draft on small features, but I think if you don’t get carried away it’ll be all good.

    There’s also a 1 mm backing plate below the mold that ensures the deepest mold parts have some substance behind them and the alignment pin sockets have enough depth to be useful.

    Scaling the image down by 10× to about 110 pixels tall (including the black border) will make the final Tux mold about 37 mm tall:

    Tux
    Tux

    This image enlarges it by 10× with no smoothing to show the gritty nature of the image. This is why you can’t have delicate detail or fine lettering:

    Tux - enlarged to show texture
    Tux – enlarged to show texture

    Notice the nearly complete lack of draft on the interior features. Each level differs by about V = 5 over the range V = 80(the border) to V = 100 (beak and flipper), so they amount to only 0.05 × 7 mm =  0.35 mm = one or two thread layers at 0.20 mm/layer. I think if you were doing this right, you’d pick an overall thickness so that V = 5 increments corresponded to one layer or use whatever V increments corresponded to a single layer.

    Running that image through the Bash script & OpenSCAD programs (more on those later) produces a reasonable result:

    Tux positive mold - solid model - oblique
    Tux positive mold – solid model – oblique

    When it’s converted into plastic, you can count the layers in each V = 5 level (clicky for more dots):

    Tux positive mold - plastic - oblique
    Tux positive mold – plastic – oblique

    It may be a bit less rounded in the tummy than the real Tux, but seems good enough for the purpose.

  • Chocolate Mold Array: Solid Model Doodling

    Given an STL file generated from a height map image, import it into OpenSCAD:

    SqWr solid model - OpenSCAD - oblique view
    SqWr solid model – OpenSCAD – oblique view

    Then slide a plate under six copies to produce a positive model for a casting mold:

    SqWr Positive Mold Framework - 2x3
    SqWr Positive Mold Framework – 2×3

    This is one of the few cases where the compiled-and-rendered version looks better, as though you’d shrink-wrapped it in gold foil:

    SqWr Positive Mold Framework - 2x3 - gold
    SqWr Positive Mold Framework – 2×3 – gold

    The height map STLs each have  a bazillion tiny facets that take forever-and-a-day (well, the better part of half an hour for this set) to render, not to mention that the whole array would take two hours to print… and then be used once or twice to produce the flexy silicone negative mold.

    So it’s better to have a generic frame with alignment pin holes that you print once:

    SqWr Positive Mold Framework - 2x3 pins
    SqWr Positive Mold Framework – 2×3 pins

    Better yet, just CNC-drill those holes in a nice, flat acrylic / polycarbonate slab.

    Insert and glue filament snippets as alignment pins, trim about 1 mm over the surface to fit the small molds.

    The OpenSCAD program can punch matching holes in the back of the small mold:

    SqWr solid model - OpenSCAD - oblique bottom
    SqWr solid model – OpenSCAD – oblique bottom

    Or you could print out an array of the things with holes:

    SqWr solid model - 2x3 array - bottom
    SqWr solid model – 2×3 array – bottom

    It’s not clear having OpenSCAD labor for half an hour to generate and emit a single STL file spanning all six molds is a win. Given that you don’t care about the mold-to-mold spacing, having Slic3r duplicate the same small STL file half a dozen (or more!) times would probably be a net win.

    There’s no reason the OpenSCAD program that creates the original STL from the height map image can’t punch alignment pin holes, too, which would avoid this import-and-recompile step. If you’re going with a CNC-drilled plate, then it would make even more sense to not have a pair of OpenSCAD programs.

    Anyhow.

    Apply a handful of small molds to the backing plate with tapeless sticky, butter it up with mold release agent, slather on silicone putty, flip it over to produce a smooth surface “under” the small molds (so you can rest it flat on a table when pouring molten chocolate into the cavities), cure, peel, and you’d get a pretty good negative mold.

    This may not make any practical sense, but it was easy & fun to see what’s possible…

    The OpenSCAD source code:

    // Positive mold framework for chocolate slabs
    // Ed Nisley - KE4ZNU - January 2014
    
    Layout = "FramePins";		// Molds FramePins FrameMolds Frame Single Pin
    
    //- Extrusion parameters must match reality!
    //  Print with 2 shells and 3 solid layers
    
    ThreadThick = 0.20;
    ThreadWidth = 0.40;
    
    Protrusion = 0.1;			// make holes end cleanly
    
    HoleWindage = 0.2;
    
    //----------------------
    // Dimensions
    
    FileName = "SqWr-press.stl";	// overrride with -D
    
    Molds = [2,3];					// count of molds within framework
    
    MoldOC = [40.0,40.0];			// on-center spacing of molds
    MoldSlab = 1.0;					// thickness of slab under molds
    
    BaseThick = 5.0;
    
    BaseSize = [(Molds[0]*MoldOC[0] + 0),(Molds[1]*MoldOC[1] + 0),BaseThick];
    echo(str("Overall base: ",BaseSize));
    
    PinOD = 1.75;					// locating pin diameter
    PinLength = 2.0;				//  ... total length
    PinSpace = 15.0;				// spacing within mold item
    
    //----------------------
    // Useful routines
    
    //- Put peg grid on build surface
    
    module ShowPegGrid(Space = 10.0,Size = 1.0) {
    
    	RangeX = floor(100 / Space);
    	RangeY = floor(125 / Space);
    
    	for (x=[-RangeX:RangeX])
    		for (y=[-RangeY:RangeY])
    			translate([x*Space,y*Space,Size/2])
    			%cube(Size,center=true);
    
    }
    
    module PolyCyl(Dia,Height,ForceSides=0) {			// based on nophead's polyholes
    
      Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    
      FixDia = Dia / cos(180/Sides);
    
      cylinder(r=(FixDia + HoleWindage)/2,
               h=Height,
    	   $fn=Sides);
    }
    
    // Locating pin hole with glue recess
    //  Default length is two pin diameters on each side of the split
    
    module LocatingPin(Dia=PinOD,Len=0.0) {
    
    	PinLen = (Len != 0.0) ? Len : (4*Dia);
    
    	translate([0,0,-ThreadThick])
    		PolyCyl((Dia + 2*ThreadWidth),2*ThreadThick,4);
    
    	translate([0,0,-2*ThreadThick])
    		PolyCyl((Dia + 1*ThreadWidth),4*ThreadThick,4);
    
    	translate([0,0,-(Len/2 + ThreadThick)])
    		PolyCyl(Dia,(Len + 2*ThreadThick),4);
    
    }
    
    module LocatingPins(Length) {
    	for (i=[-1,1])
    	translate([i*PinSpace/2,0,0])
    		LocatingPin(Len=Length);
    }
    
    //-- import a single mold item
    
    module MoldItem() {
    	import(FileName,convexity=10);
    }
    
    //-- Overall frame shape
    
    module Frame() {
    
    	translate([0,0,BaseSize[2]/2])		// platform under molds
    		cube(BaseSize,center=true);
    
    }
    
    //- Build it
    
    ShowPegGrid();
    
    if (Layout == "Pin")
    	LocatingPin(Len=PinLength);
    
    if (Layout == "Single")
    	difference() {
    		MoldItem();
    		LocatingPins(PinLength);
    	}
    
    if (Layout == "Frame")
    	Frame();
    
    if (Layout == "Molds") {
    	translate([-MoldOC[0]*(Molds[0] - 1)/2,-MoldOC[1]*(Molds[1] - 1)/2,0])
    	for (i=[0:Molds[0]-1],j=[0:Molds[1]-1])
    		translate([i*MoldOC[0],j*MoldOC[1],0])
    			difference() {
    				MoldItem();
    				LocatingPins(PinLength);
    			}
    }
    
    if (Layout == "FramePins")
    	difference() {
    		Frame();
    
    		translate([-MoldOC[0]*(Molds[0] - 1)/2,-MoldOC[1]*(Molds[1] - 1)/2,0])
    			for (i=[0:Molds[0]-1],j=[0:Molds[1]-1])
    				translate([i*MoldOC[0],j*MoldOC[1],BaseSize[2]])
    					LocatingPins(BaseThick);
    	}
    
    if (Layout == "FrameMolds") {
    	Frame();
    	translate([-MoldOC[0]*(Molds[0] - 1)/2,-MoldOC[1]*(Molds[1] - 1)/2,0])
    		for (i=[0:Molds[0]-1],j=[0:Molds[1]-1])
    			translate([i*MoldOC[0],j*MoldOC[1],BaseThick - MoldSlab + Protrusion])
    			MoldItem();
    }
    
  • Chocolate Mold Height Map

    Given that you really don’t care about the absolute dimensions, you can generate a positive mold from a height map image and avoid the entire solid modeling process. Having already solved the cookie press problem, this was a quick-and-easy feasibility study…

    Start by selecting the logo, growing the selection by a few pixels, and feathering the edges to produce the mold draft. Then apply a square gradient behind the Squidwrench logo to produce the height map for the edge of the mold. This one is scaled at 3.0 pixel/mm and is 100×100 pixel, thus producing a 33 mm square mold:

    Squidwrench Mold Pocket

    One could, of course, produce a non-square mold with a different gradient outline shape.

    Hand the image to a slightly modified version of the cookie press script (see below) to get an STL file of the mold:

    SqWr solid model - oblique view
    SqWr solid model – oblique view

    Feed the STL into Slic3r, hand the G-Code to Pronterface, fire the M2!, and you get a positive mold that looks enough like black chocolate to seem ready-to-eat:

    SqWr - mold positive
    SqWr – mold positive

    I have no idea whether that will work as a mold, but I suspect flexy silicone putty won’t reproduce much of the fine plastic filament detail, so the negative mold won’t grab the chocolate. The logo is six threads deep with a little bit of draft, if that makes any difference.

    The backing plate is 1 mm thick and the height map is 5 mm stacked atop that. A few iterations suggested using about 0.75 gray for the logo; working backwards says 5 mm = 25 layers @ 0.20 mm/layer, so a depth of 0.25 * 25 is about six threads.

    For production use, I’d be tempted to import maybe a dozen copies of the STL into OpenSCAD, mount them on a platform with a gutter and a lip on the outside, and then print the whole positive multi-cavity mold in one shot.

    The Bash script that produces the mold strongly resembles my cookie cutter script and contains about as much cruft as you’d expect. Because we need a positive mold, not a negative press, the script doesn’t invert the colors or flop the image left-to-right, nor does it generate the cookie cutter STL around the outside of the press:

    #!/bin/bash
    DotsPerMM=3.0
    MapHeight=7
    ImageName="${1%%.*}"
    rm ${ImageName}_* ${ImageName}-press.stl ${ImageName}-cutter.stl
    echo Normalize and prepare grayscale image...
    convert $1 -type Grayscale -depth 8 -auto-level -trim +repage -flip +set comment ${ImageName}_prep.png
    echo Create PGM files...
    convert ${ImageName}_prep.png -compress none ${ImageName}_map.pgm
    convert ${ImageName}_prep.png -white-threshold 1 -compress none ${ImageName}_plate.pgm
    echo Create height map data files...
    ImageX=`identify -format '%[fx:w]' ${ImageName}_map.pgm`
    ImageY=`identify -format '%[fx:h]' ${ImageName}_map.pgm`
    echo Width: ${ImageX} x Height: ${ImageY}
    cat ${ImageName}_map.pgm   | tr -s ' \012' '\012' | tail -n +5 | column -x -c $((8*$ImageX)) > ${ImageName}_map.dat
    cat ${ImageName}_plate.pgm | tr -s ' \012' '\012' | tail -n +5 | column -x -c $((8*$ImageX)) > ${ImageName}_plate.dat
    echo Create cookie press...
    time openscad -D BuildPress=true \
    -D fnPlate=\"${ImageName}_plate.dat\" \
    -D fnMap=\"${ImageName}_map.dat\" -D Height=$MapHeight \
    -D ImageX=$ImageX -D ImageY=$ImageY -D DotsPerMM=$DotsPerMM \
    -o ${ImageName}-press.stl Cookie\ Cutter.scad
    

    The OpenSCAD program are unchanged from the cookie cutter process.