The crystal test fixture and amp huddle in front of the OLED display:

The schematic:

The 22 pF cap now sits across the relay’s NO contacts, so as to simplify measuring the total in-circuit capacitance. The LED turns on when the relay shorts out the capacitor, which has a 50% probability of making more sense.
The quartz tuning fork resonators have an ESR around 20 or 30 kΩ, so the off-resonance output should be down something like -60 dB = 20 log (24 / 24×10³) from the 150 mV input: 200 µV (-ish). It’s actually around 1 mV, suggesting plenty of blowby through the baling-wire connections hidden under that neat top surface. I think that’s why the whole setup shows only about 8 dB of dynamic range; more attention to detail may be in order, although the peaks probably won’t move all that much.
Anyhow, even though the AD8310 log amp module should be able to handle such a tiny signal, the MAX4255 amp provides 40 dB of gain (OK, just 39.8 dB) and rolls off the high end at 220 kHz as a side benefit of its 22 MHz GBW.
There’s way too much low frequency rumble at the amp output:

What look like grass is actually the 60 kHz resonator output: those big lumps & bumps are noise from this-and-that. The repetitive peaks and dents exactly 10 ms apart (the cursors span four of ’em) felt a lot like OLED refresh cycles and, indeed, went away when I yanked the display out. Pulling the USB connection eliminates another tremendous heap o’ noise, so there’s likely a ground loop (-ish) thing going on, too. This may call for a USB optical isolator, its commercial equivalent, or more eBay offerings. Getting rid of that junk may improve the dynamic range enough to keep me from doing anything drastic.
The AD8310 log amp input now has decent coupling caps, so it’s not seeing the VCC/2 bias, and I removed that kludged-in 50 Ω terminating resistor to present its full 1.1 kΩ input resistance to the op amp.
One thought on “LF Crystal Tester: Fixture Output Amp”
Comments are closed.