# Arduino vs. Significant Figures: Useful 64-bit Fixed Point

Devoting eight bytes to every fixed point number may be excessive, but having nine significant figures apiece for the integer and fraction parts pushes the frequency calculations well beyond the limits of the DDS hardware, without involving any floating point library routines. This chunk of code performs a few more calculations using the format laid out earlier and explores a few idioms that may come in handy later.

Rounding the numbers to a specific number of decimal places gets rid of the repeating-digit problem that turns 0.10 into 0.099999:

```uint64_t RoundFixedPt(union ll_u TheNumber,unsigned Decimals) {
union ll_u Rnd;

Rnd.fx_64 = (One.fx_64 / 2) / (pow(10LL,Decimals));
TheNumber.fx_64 = TheNumber.fx_64 + Rnd.fx_64;
return TheNumber.fx_64;
}
```

That pretty well trashes the digits beyond the rounded place, so you shouldn’t display any more of them:

```void PrintFixedPtRounded(char *pBuffer,union ll_u FixedPt,unsigned Decimals) {
char *pDecPt;

FixedPt.fx_64 = RoundFixedPt(FixedPt,Decimals);

PrintIntegerLL(pBuffer,FixedPt);  // do the integer part

pBuffer += strlen(pBuffer);       // aim pointer beyond integer

pDecPt = pBuffer;                 // save the point location
*pBuffer++ = '.';                 // drop in the decimal point, tick pointer

PrintFractionLL(pBuffer,FixedPt);

if (Decimals == 0)
*pDecPt = 0;                    // 0 places means discard the decimal point
else
*(pDecPt + Decimals + 1) = 0;   // truncate string to leave . and Decimals chars
}
```

Which definitely makes the numbers look prettier:

```  Tenth.fx_64 = One.fx_64 / 10;             // Likewise, 0.1
PrintFixedPt(Buffer,Tenth);
printf("\n0.1: %s\n",Buffer);
PrintFixedPtRounded(Buffer,Tenth,9);                    // show rounded value
printf("0.1 to 9 dec: %s\n",Buffer);

TestFreq.fx_64 = RoundFixedPt(Tenth,3);                 // show full string after rounding
PrintFixedPt(Buffer,TestFreq);
printf("0.1 to 3 dec: %s (full string)\n",Buffer);

PrintFixedPtRounded(Buffer,Tenth,3);                    // show truncated string with rounded value
printf("0.1 to 3 dec: %s (truncated string)\n",Buffer);

0.1: 0.099999999
0.1 to 9 dec: 0.100000000
0.1 to 3 dec: 0.100499999 (full string)
0.1 to 3 dec: 0.100 (truncated string)

CtPerHz.fx_64 = -1;                       // Set up 2^32 - 1, which is close enough
CtPerHz.fx_64 /= 125 * MEGA;              // divide by nominal oscillator
PrintFixedPt(Buffer,CtPerHz);
printf("\nCt/Hz = %s\n",Buffer);

printf("Rounding: \n");
for (int d = 9; d >= 0; d--) {
PrintFixedPtRounded(Buffer,CtPerHz,d);
printf("     %d: %s\n",d,Buffer);
}

Ct/Hz = 34.359738367
Rounding:
9: 34.359738368
8: 34.35973837
7: 34.3597384
6: 34.359738
5: 34.35974
4: 34.3597
3: 34.360
2: 34.36
1: 34.4
0: 34
```

Multiplying two scaled 64-bit fixed-point numbers should produce a 128-bit result. For all the values we (well, I) care about, the product will fit into a 64-bit result, because the integer parts will always multiply out to less than 232 and we don’t care about more than 32 bits of fraction. This function multiplies two fixed point numbers of the form `a.b × c.d` by adding up the partial products thusly: `ac + bd + ad + bc`. The product of the integers `ac` won’t overflow 32 bits, the cross products `ad` and `bc` will always be slightly less than their integer factors, and the fractional product `bd` will always be less than 1.0.

Soooo, just multiply ’em out as 64-bit integers, shift the products around to align the appropriate parts, and add up the pieces:

```
uint64_t MultiplyFixedPt(union ll_u Mcand, union ll_u Mplier) {
union ll_u Result;

Result.fx_64  = ((uint64_t)Mcand.fx_32.high * (uint64_t)Mplier.fx_32.high) << 32; // integer parts (clear fract)
Result.fx_64 += ((uint64_t)Mcand.fx_32.low * (uint64_t)Mplier.fx_32.low) >> 32;   // fraction parts (always < 1)
Result.fx_64 += (uint64_t)Mcand.fx_32.high * (uint64_t)Mplier.fx_32.low;          // cross products
Result.fx_64 += (uint64_t)Mcand.fx_32.low * (uint64_t)Mplier.fx_32.high;

return Result.fx_64;
}
```

This may be a useful way to set magic numbers with a few decimal places, although it does require keeping the decimal point in mind:

```  TestFreq.fx_64 = (599999LL * One.fx_64) / 10;           // set 59999.9 kHz differently
PrintFixedPt(Buffer,TestFreq);
printf("\nTest frequency: %s\n",Buffer);
PrintFixedPtRounded(Buffer,TestFreq,1);
printf("         round: %s\n",Buffer);

Test frequency: 59999.899999999
round: 59999.9
```

Contrary to what I thought, computing the `CtPerHz` coefficient doesn’t require pre-dividing both 232 and the oscillator by 2, thus preventing the former from overflowing a 32 bit integer. All you do is knock the numerator down by one little itty bitty count you’ll never notice:

```  CtPerHz.fx_64 = -1;                       // Set up 2^32 - 1, which is close enough
CtPerHz.fx_64 /= 125 * MEGA;              // divide by nominal oscillator
PrintFixedPt(Buffer,CtPerHz);
printf("\nCt/Hz = %s\n",Buffer);

Ct/Hz = 34.359738367
```

That’s also the largest possible fixed-point number, because unsigned:

```  TempFX.fx_64 = -1;
PrintFixedPt(Buffer,TempFX);
printf("Max fixed point: %s\n",Buffer);

Max fixed point: 4294967295.999999999
```

With nine.nine significant figures in the mix, tweaking the 125 MHz oscillator to within 2 Hz will work:

```Oscillator tune: CtPerHz
Oscillator: 125000000.00
-10 -> 34.359741116
-9 -> 34.359741116
-8 -> 34.359740566
-7 -> 34.359740566
-6 -> 34.359740017
-5 -> 34.359740017
-4 -> 34.359739467
-3 -> 34.359739467
-2 -> 34.359738917
-1 -> 34.359738917
+0 -> 34.359738367
+1 -> 34.359738367
+2 -> 34.359737818
+3 -> 34.359737818
+4 -> 34.359737268
+5 -> 34.359737268
+6 -> 34.359736718
+7 -> 34.359736718
+8 -> 34.359736168
+9 -> 34.359736168
+10 -> 34.359735619
```

So, all in all, this looks good. The vast number of strings in the test program bulk it up beyond reason, but in actual practice I think the code will be smaller than the equivalent floating point version, with more significant figures. Speed isn’t an issue either way, because the delays waiting for the crystal tester to settle down at each frequency step should be larger than any possible computation.

The results were all verified with my trusty HP 50g and HP-15C calculators, both of which wipe the floor with any other way of handling mixed binary / hex / decimal arithmetic. If you do bit-wise calculations, even on an irregular basis, get yourself a SwissMicro DM16L; you can thank me later.

The Arduino source code as a GitHub Gist:

This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
 // Fixed point exercise for 60 kHz crystal tester #include char Buffer[10+1+10+1]; // string buffer for long long conversions #define GIGA 1000000000LL #define MEGA 1000000LL #define KILO 1000LL struct ll_fx { uint32_t low; uint32_t high; }; union ll_u { uint64_t fx_64; struct ll_fx fx_32; }; union ll_u CtPerHz; // will be 2^32 / 125 MHz union ll_u HzPerCt; // will be 125 MHz / 2^32 union ll_u One; // 1.0 as fixed point union ll_u Tenth; // 0.1 as fixed point union ll_u TenthHzCt; // 0.1 Hz in counts union ll_u Oscillator; // nominal oscillator frequency union ll_u OscOffset; // oscillator calibration offset union ll_u TestFreq,TestCount; // useful variables union ll_u TempFX; //----------- // Round scaled fixed point to specific number of decimal places: 0 through 8 // You should display the value with only Decimals characters beyond the point // Must calculate rounding value as separate variable to avoid mystery error uint64_t RoundFixedPt(union ll_u TheNumber,unsigned Decimals) { union ll_u Rnd; // printf(" round before: %08lx %08lx\n",TheNumber.fx_32.high,TheNumber.fx_32.low); Rnd.fx_64 = (One.fx_64 / 2) / (pow(10LL,Decimals)); // printf(" incr: %08lx %08lx\n",Rnd.fx_32.high,Rnd.fx_32.low); TheNumber.fx_64 = TheNumber.fx_64 + Rnd.fx_64; // printf(" after: %08lx %08lx\n",TheNumber.fx_32.high,TheNumber.fx_32.low); return TheNumber.fx_64; } //----------- // Multiply two unsigned scaled fixed point numbers without overflowing a 64 bit value // The product of the two integer parts mut be < 2^32 uint64_t MultiplyFixedPt(union ll_u Mcand, union ll_u Mplier) { union ll_u Result; Result.fx_64 = ((uint64_t)Mcand.fx_32.high * (uint64_t)Mplier.fx_32.high) << 32; // integer parts (clear fract) Result.fx_64 += ((uint64_t)Mcand.fx_32.low * (uint64_t)Mplier.fx_32.low) >> 32; // fraction parts (always < 1) Result.fx_64 += (uint64_t)Mcand.fx_32.high * (uint64_t)Mplier.fx_32.low; // cross products Result.fx_64 += (uint64_t)Mcand.fx_32.low * (uint64_t)Mplier.fx_32.high; return Result.fx_64; } //----------- // Long long print-to-buffer helpers // Assumes little-Endian layout void PrintHexLL(char *pBuffer,union ll_u FixedPt) { sprintf(pBuffer,"%08lx %08lx",FixedPt.fx_32.high,FixedPt.fx_32.low); } // converts all 9 decimal digits of fraction, which should suffice void PrintFractionLL(char *pBuffer,union ll_u FixedPt) { union ll_u Fraction; Fraction.fx_64 = FixedPt.fx_32.low; // copy 32 fraction bits, high order = 0 Fraction.fx_64 *= GIGA; // times 10^9 for conversion Fraction.fx_64 >>= 32; // align integer part in low long sprintf(pBuffer,"%09lu",Fraction.fx_32.low); // convert low long to decimal } void PrintIntegerLL(char *pBuffer,union ll_u FixedPt) { sprintf(pBuffer,"%lu",FixedPt.fx_32.high); } void PrintFixedPt(char *pBuffer,union ll_u FixedPt) { PrintIntegerLL(pBuffer,FixedPt); // do the integer part pBuffer += strlen(pBuffer); // aim pointer beyond integer *pBuffer++ = '.'; // drop in the decimal point, tick pointer PrintFractionLL(pBuffer,FixedPt); } void PrintFixedPtRounded(char *pBuffer,union ll_u FixedPt,unsigned Decimals) { char *pDecPt; //char *pBase; // pBase = pBuffer; FixedPt.fx_64 = RoundFixedPt(FixedPt,Decimals); PrintIntegerLL(pBuffer,FixedPt); // do the integer part // printf(" Buffer int: [%s]\n",pBase); pBuffer += strlen(pBuffer); // aim pointer beyond integer pDecPt = pBuffer; // save the point location *pBuffer++ = '.'; // drop in the decimal point, tick pointer PrintFractionLL(pBuffer,FixedPt); // printf(" Buffer all: [%s]\n",pBase); if (Decimals == 0) *pDecPt = 0; // 0 places means discard the decimal point else *(pDecPt + Decimals + 1) = 0; // truncate string to leave . and Decimals chars // printf(" Buffer end: [%s]\n",pBase); } //-- Helper routine for printf() int s_putc(char c, FILE *t) { Serial.write(c); } //----------- void setup () { Serial.begin (115200); fdevopen(&s_putc,0); // set up serial output for printf() Serial.println (F("DDS calculation exercise")); Serial.println (F("Ed Nisley - KE4ZNU - May 2017\n")); // set up useful constants TempFX.fx_64 = -1; PrintFixedPt(Buffer,TempFX); printf("Max fixed point: %s\n",Buffer); One.fx_32.high = 1; // Set up 1.0, a very useful constant PrintFixedPt(Buffer,One); printf("\n1.0: %s\n",Buffer); Tenth.fx_64 = One.fx_64 / 10; // Likewise, 0.1 PrintFixedPt(Buffer,Tenth); printf("\n0.1: %s\n",Buffer); PrintFixedPtRounded(Buffer,Tenth,9); // show rounded value printf("0.1 to 9 dec: %s\n",Buffer); TestFreq.fx_64 = RoundFixedPt(Tenth,3); // show full string after rounding PrintFixedPt(Buffer,TestFreq); printf("0.1 to 3 dec: %s (full string)\n",Buffer); PrintFixedPtRounded(Buffer,Tenth,3); // show truncated string with rounded value printf("0.1 to 3 dec: %s (truncated string)\n",Buffer); CtPerHz.fx_64 = -1; // Set up 2^32 - 1, which is close enough CtPerHz.fx_64 /= 125 * MEGA; // divide by nominal oscillator PrintFixedPt(Buffer,CtPerHz); printf("\nCt/Hz = %s\n",Buffer); printf("Rounding: \n"); for (int d = 9; d >= 0; d--) { PrintFixedPtRounded(Buffer,CtPerHz,d); printf(" %d: %s\n",d,Buffer); } HzPerCt.fx_64 = 125 * MEGA; // 125 MHz / 2^32, without actually shifting! PrintFixedPt(Buffer,HzPerCt); printf("\nHz/Ct: %s\n",Buffer); TenthHzCt.fx_64 = MultiplyFixedPt(Tenth,CtPerHz); // 0.1 Hz as delta-phase count PrintFixedPt(Buffer,TenthHzCt); printf("\n0.1 Hz as ct: %s\n",Buffer); printf("Rounding: \n"); for (int d = 9; d >= 0; d--) { PrintFixedPtRounded(Buffer,TenthHzCt,d); printf(" %d: %s\n",d,Buffer); } // Try out various DDS computations TestFreq.fx_64 = One.fx_64 * (60 * KILO); // set 60 kHz PrintFixedPt(Buffer,TestFreq); printf("\nTest frequency: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestCount.fx_64 = MultiplyFixedPt(TestFreq,CtPerHz); // convert to counts PrintFixedPt(Buffer,TestCount); printf("Delta phase ct: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestCount,0); printf(" round to int: %s\n",Buffer); TestFreq.fx_64 += Tenth.fx_64; // set 60000.1 kHz PrintFixedPt(Buffer,TestFreq); printf("\nTest frequency: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestCount.fx_64 = MultiplyFixedPt(TestFreq,CtPerHz); // convert to counts PrintFixedPt(Buffer,TestCount); printf("Delta phase ct: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestCount,0); printf(" round to int: %s\n",Buffer); TestFreq.fx_64 -= Tenth.fx_64 * 2; // set 59999.9 kHz PrintFixedPt(Buffer,TestFreq); printf("\nTest frequency: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestCount.fx_64 = MultiplyFixedPt(TestFreq,CtPerHz); // convert to counts PrintFixedPt(Buffer,TestCount); printf("Delta phase ct: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestCount,0); printf(" round to int: %s\n",Buffer); TestFreq.fx_64 = (599999LL * One.fx_64) / 10; // set 59999.9 kHz differently PrintFixedPt(Buffer,TestFreq); printf("\nTest frequency: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestCount.fx_64 = MultiplyFixedPt(TestFreq,CtPerHz); // convert to counts PrintFixedPt(Buffer,TestCount); printf("Delta phase ct: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestCount,0); printf(" round to int: %s\n",Buffer); TempFX.fx_64 = RoundFixedPt(TestCount,0); // compute frequency from integer count TestFreq.fx_64 = MultiplyFixedPt(TempFX,HzPerCt); PrintFixedPt(Buffer,TestFreq); printf("Int ct -> freq: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestFreq.fx_64 = One.fx_64 * (10 * MEGA); // set 10 MHz PrintFixedPt(Buffer,TestFreq); printf("\nTest frequency: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestCount.fx_64 = MultiplyFixedPt(TestFreq,CtPerHz); // convert to counts PrintFixedPt(Buffer,TestCount); printf("Delta phase ct: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestCount,0); printf(" round to int: %s\n",Buffer); TempFX.fx_64 = RoundFixedPt(TestCount,0); // compute frequency from integer count TestFreq.fx_64 = MultiplyFixedPt(TempFX,HzPerCt); PrintFixedPt(Buffer,TestFreq); printf("Int ct -> freq: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestFreq.fx_64 = One.fx_64 * (10 * MEGA); // set 10 MHz + 0.1 Hz TestFreq.fx_64 += Tenth.fx_64; PrintFixedPt(Buffer,TestFreq); printf("\nTest frequency: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestCount.fx_64 = MultiplyFixedPt(TestFreq,CtPerHz); // convert to counts PrintFixedPt(Buffer,TestCount); printf("Delta phase ct: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestCount,0); printf(" round to int: %s\n",Buffer); TempFX.fx_64 = RoundFixedPt(TestCount,0); // compute frequency from integer count TestFreq.fx_64 = MultiplyFixedPt(TempFX,HzPerCt); PrintFixedPt(Buffer,TestFreq); printf("Int ct -> freq: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestFreq.fx_64 = One.fx_64 * (10 * MEGA); // set 10 MHz - 0.1 Hz TestFreq.fx_64 -= Tenth.fx_64; PrintFixedPt(Buffer,TestFreq); printf("\nTest frequency: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); TestCount.fx_64 = MultiplyFixedPt(TestFreq,CtPerHz); // convert to counts PrintFixedPt(Buffer,TestCount); printf("Delta phase ct: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestCount,0); printf(" round to int: %s\n",Buffer); TempFX.fx_64 = RoundFixedPt(TestCount,0); // compute frequency from integer count TestFreq.fx_64 = MultiplyFixedPt(TempFX,HzPerCt); PrintFixedPt(Buffer,TestFreq); printf("Int ct -> freq: %s\n",Buffer); PrintFixedPtRounded(Buffer,TestFreq,1); printf(" round: %s\n",Buffer); Oscillator.fx_64 = One.fx_64 * (125 * MEGA); Serial.println("Oscillator tune: CtPerHz"); PrintFixedPtRounded(Buffer,Oscillator,2); printf(" Oscillator: %s\n",Buffer); for (int i=-10; i<=10; i++) { OscOffset.fx_64 = i * One.fx_64; CtPerHz.fx_64 = 1LL << 63; CtPerHz.fx_64 /= (Oscillator.fx_64 + OscOffset.fx_64) >> 33; PrintFixedPt(Buffer,CtPerHz); printf(" %+3d -> %s\n",i,Buffer); } } //----------- void loop () { }
view raw DDSCalcTest.ino hosted with ❤ by GitHub
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
 DDS calculation exercise Ed Nisley - KE4ZNU - May 2017 Max fixed point: 4294967295.999999999 1.0: 1.000000000 0.1: 0.099999999 0.1 to 9 dec: 0.100000000 0.1 to 3 dec: 0.100499999 (full string) 0.1 to 3 dec: 0.100 (truncated string) Ct/Hz = 34.359738367 Rounding: 9: 34.359738368 8: 34.35973837 7: 34.3597384 6: 34.359738 5: 34.35974 4: 34.3597 3: 34.360 2: 34.36 1: 34.4 0: 34 Hz/Ct: 0.029103830 0.1 Hz as ct: 3.435973831 Rounding: 9: 3.435973832 8: 3.43597383 7: 3.4359738 6: 3.435974 5: 3.43597 4: 3.4360 3: 3.436 2: 3.44 1: 3.4 0: 3 Test frequency: 60000.000000000 round: 60000.0 Delta phase ct: 2061584.302070550 round to int: 2061584 Test frequency: 60000.099999999 round: 60000.1 Delta phase ct: 2061587.738044382 round to int: 2061588 Test frequency: 59999.900000000 round: 59999.9 Delta phase ct: 2061580.866096718 round to int: 2061581 Test frequency: 59999.899999999 round: 59999.9 Delta phase ct: 2061580.866096710 round to int: 2061581 Int ct -> freq: 59999.914551639 round: 59999.9 Test frequency: 10000000.000000000 round: 10000000.0 Delta phase ct: 343597383.678425103 round to int: 343597384 Int ct -> freq: 10000000.014506079 round: 10000000.0 Test frequency: 10000000.099999999 round: 10000000.1 Delta phase ct: 343597387.114398935 round to int: 343597387 Int ct -> freq: 10000000.114506079 round: 10000000.1 Test frequency: 9999999.900000000 round: 9999999.9 Delta phase ct: 343597380.242451271 round to int: 343597380 Int ct -> freq: 9999999.914506079 round: 9999999.9 Oscillator tune: CtPerHz Oscillator: 125000000.00 -10 -> 34.359741116 -9 -> 34.359741116 -8 -> 34.359740566 -7 -> 34.359740566 -6 -> 34.359740017 -5 -> 34.359740017 -4 -> 34.359739467 -3 -> 34.359739467 -2 -> 34.359738917 -1 -> 34.359738917 +0 -> 34.359738367 +1 -> 34.359738367 +2 -> 34.359737818 +3 -> 34.359737818 +4 -> 34.359737268 +5 -> 34.359737268 +6 -> 34.359736718 +7 -> 34.359736718 +8 -> 34.359736168 +9 -> 34.359736168 +10 -> 34.359735619
view raw DDSCalcTest.txt hosted with ❤ by GitHub

## 14 thoughts on “Arduino vs. Significant Figures: Useful 64-bit Fixed Point”

I’m a big fan of creative integer math. It’s fast, relatively small, and predictable. And, as in your case, there are often opportunities for creative optimization. I’m really enjoying reading how you go about it.

1. Ed says:

Thanks for the good words!

You’ll be amused to know I can zero-beat the DDS to the GPS-locked oscillator, then waving my hand near the (insulated!) DDS board shifts the frequency by just under 1 Hz. Of course, that’s only 4 parts per billion, but now I can see it!

2. solaandjin says:

My first impulse would have been to Google for “arduino fixed point library”: https://github.com/Yveaux/Arduino_fixpt

Is there some hidden reason why this would not be appropriate? Not to rain on your parade, I know how much fun DIY can be.

1. Ed says:

I really only needed a multiplication that lets me go from 60-ish kHz to the DDS register value with enough significant digits to not wreck 0.1 Hz frequency steps, so dragging in a whole library seems like entirely too much of a good thing. That whole mess of code boils down to some structs and a couple of functions, so it’s not really all that much effort.

Plus, I’m just finishing a Circuit Cellar column on significant figures vs. DDS computations, wherein I show some code and discuss the consequences, so it’s best if I understand what I’m doing. [grin]

Update — If I understand the notation correctly, the library tops out at Q16.16 with 16 bits apiece for the integer and fraction parts: definitely not big enough. I need about nine decimal digits = 32 bits for each part, so (I think) what I’m doing is Q32.32.

3. Before you run off and write too much code for handling this data type, I think you’ve just recreated the “Rational” data type used in EXIF camera metadata. ISTR it being a struct of two 32-bit integers as numerator and denominator. There may be libraries out there that will have tested code for you to use.

1. Ed says:

I must hang out a shingle: Wheels reinvented while you wait watch!

The intersection of Arduino RAM and EXIF image data surely defines a vanishingly small area, one not revealed by a casual search with the obvious keywords …

In any event, there’s not a whole lot more code before this mess gets off the ground. I’ve been squirting frequency steps into the DDS with gleeful abandon; the SPI hardware requires just a few dozen lines of code. Looking good!

1. Fair enough. Not finding much code either (well, lots of the same rational → float: exactly what you don’t want). Also, EXIF’s “SRATIONAL” type wastes a bit by having both numerator and denominator signed.

1. … though I did just find out that avr-gcc has supported Q32.32 fixed point (and many others) for a while. Any attempt to include stdfix.h and use the K suffix in the Arduino IDE gives you this, though: “fixed-point types not supported in C++”, dangit.

1. Ed says:

Makes a few dozen lines of OwnCode™ look downright attractive …