The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Tag: Sewing

Fabric arts and machines

  • Kenmore 158 UI: Button Framework Functions

    Given the data structures defining the buttons, this code in the main loop() detects a touch, identifies the corresponding button, and does what’s needed:

    if (CleanTouch(&pt)) {
    	BID = FindHit(pt);
    	if (BID) {
    		HitButton(BID);
    	}
    	while(ts.touched())				// stall waiting for release
    		ts.getPoint();
    }
    

    The CleanTouch() function handles touch detection, cleanup, and rotation, delivering a coordinate that matches one of the LCD pixels. Given that you’re using a fingertip, errors caused by poor calibration or nonlinearities Just Don’t Matter.

    This function matches that coordinate against the target region of each button, draws a white rectangle on the first matching button, and returns that button ID:

    byte FindHit(TS_Point hit) {
    
    byte i;
    TS_Point ul,lr;
    
    #define MARGIN 12
    
    //	printf("Hit test: (%d,%d)\r\n",hit.x,hit.y);
    
    	for (i=0; i<NumButtons ; i++) {
    		ul.x = Buttons[i].ulX + Buttons[i].szX/MARGIN;
    		ul.y = Buttons[i].ulY + Buttons[i].szY/MARGIN;
    		lr.x = Buttons[i].ulX + ((MARGIN - 1)*Buttons[i].szX)/MARGIN;
    		lr.y = Buttons[i].ulY + ((MARGIN - 1)*Buttons[i].szY)/MARGIN;
    //		printf(" i: %d BID: %d S: %d ul=(%d,%d) sz=(%d,%d)\r\n",
    //			   i,Buttons[i].ID,Buttons[i].Status,ul.x,ul.y,lr.x,lr.y);
    		if ((hit.x >= ul.x && hit.x < lr.x) &&
    			(hit.y >= ul.y && hit.y <= lr.y)) {
    			// should test for being disabled and discard hit
    //			printf(" Hit i: %d ",i);
    			break;
    		}
    	}
    
    	if (i < NumButtons) {
    		tft.drawRect(ul.x,ul.y,lr.x-ul.x,lr.y-ul.y,ILI9341_WHITE);
    		return Buttons[i].ID;
    	}
    	else {
    		printf(" No hit!\r\n");
    		return 0;
    	}
    
    }
    

    You can enable as much debugging as you need by fiddling with the commented-out lines.

    After some empirical fiddling, a non-sensitive margin of 1/12 the button size helped prevent bogus hits. There’s no real need to draw the target rectangle, other than for debugging:

    Kenmore 158 UI buttons - hit target
    Kenmore 158 UI buttons – hit target

    The target shows the button graphics aren’t quite centered, because that’s how the ImageMagick script placed them while generating the shadow effect, but it still works surprisingly well. The next version of the buttons will center the graphics, specifically so I don’t have to explain what’s going on.

    Because the margin is 1/12 the size of the button, it rounds off to zero for the tiny button in the upper right corner, so that the touch target includes the entire graphic.

    The return value will be zero if the touch missed all the buttons, which is why a button ID can’t be zero.

    Given the button ID, this function un-pushes the other button(s) in its radio button group, then pushes the new button:

    byte HitButton(byte BID) {
    
    byte i,BX;
    byte Group;
    
    	if (!BID)											// not a valid ID
    		return 0;
    
    	BX = FindButtonIndex(BID);
    	if (BX == NumButtons)								// no button for that ID
    		return 0;
    
    	Group = Buttons[BX].Group;
    
    //	printf(" Press %d X: %d G: %d\r\n",BID,BX,Group);
    
    // If in button group, un-push other buttons
    
    	if (Group) {
    		for (i=0; i<NumButtons; i++) {
    			if ((Group == Buttons[i].Group) && (BT_DOWN == Buttons[i].Status)) {
    				if (i == BX) {							// it's already down, fake going up
    					Buttons[i].Status = BT_UP;
    				}
    				else {									// un-push other down button(s)
    //					printf(" unpress %d X: %d \r\n",Buttons[i].ID);
    					Buttons[i].pAction(Buttons[i].ID);
    				}
    			}
    		}
    	}
    
    	Buttons[BX].pAction(BID);
    
    	return 1;
    }
    

    The ID validation shouldn’t be necessary, but you know how things go. A few messages in there would help debugging.

    The default button action routine that I use for all the buttons just toggles the button’s Status and draws the new button graphic:

    void DefaultAction(byte BID) {
    
    byte i,BX;
    
    	if (!BID) {											// not a valid ID
    		printf("** Button ID zero in DefaultAction\r\n");
    		return;
    	}
    
    	BX = FindButtonIndex(BID);
    	if (BX == NumButtons) {								// no button for that ID
    		printf("** No table entry for ID: %d\r\n",BID);
    		return;
    	}
    
    	Buttons[BX].Status = (Buttons[BX].Status == BT_DOWN) ? BT_UP : BT_DOWN;
    
    	printf("Button %d hit, now %d\r\n",BID,Buttons[BX].Status);
    	DrawButton(BID,Buttons[BX].Status);
    
    }
    

    The little color indicator button has a slightly different routine to maintain a simple counter stepping through all ten resistor color codes in sequence:

    void CountColor(byte BID) {
    
    byte i,BX;
    static byte Count = 0;
    
    	if (!BID) {											// not a valid ID
    		printf("** Zero button ID\r\n");
    		return;
    	}
    
    	BX = FindButtonIndex(BID);
    	if (BX == NumButtons) {								// no button for that ID
    		printf("** No entry for ID: %d\r\n",BID);
    		return;
    	}
    
    	Buttons[BX].Status = BT_DOWN;						// this is always pressed
    
    	Count = (Count < 9) ? ++Count : 0;					// bump counter & wrap
    
    //	printf("Indicator %d hit, now %d\r\n",BID,Count);
    	DrawButton(BID,Count);
    
    }
    

    The indicator “button” doesn’t go up when pressed and its function controls what’s displayed.

    I think the button action function should have an additional parameter giving the next Status value, so that it knows what’s going on, thus eliminating the need to pre-push & redraw buttons in HitButton(), which really shouldn’t peer inside the button data.

    It needs more work and will definitely change, but this gets things started.

  • Kenmore 158 UI: Button Framework Data Structures

    The trouble with grafting a fancy LCD on an 8 bit microcontroller like an Arduino is that there’s not enough internal storage for button images and barely enough I/O bandwidth to shuffle bitmap files from the SD card to the display. Nevertheless, that seems to be the least awful way of building a serviceable UI that doesn’t involve drilling holes for actual switches, indicators, and ugly 2×20 character LCD panels.

    Rather than hardcoding the graphics into the Arduino program, though, it makes sense to build a slightly more general framework to handle button images and overall UI design, more-or-less independently of the actual program. I haven’t been able to find anything that does what I need, without doing a whole lot more, sooooo here’s a quick-and-dirty button framework.

    Calling it a framework might be overstating the case: it’s just a data structure and some functions. It really should be a separate library, but …

    After considerable discussion with the user community, the first UI can control just three functions:

    • Needle stop position: up, down, don’t care
    • Operating mode: follow pedal position, triggered single-step, normal run
    • Speed: slow, fast, ultra-fast

    That boils down into a simple nine-button display, plus a tiny tenth button (in brown that looks red) at the top right:

    Kenmore 158 UI buttons - first pass
    Kenmore 158 UI buttons – first pass

    The viciously skeuomorphic button shading should show the button status. For example, in the leftmost column:

    • The two upper button are “up”, with light glinting from upward-bulging domes
    • The lower button is “down”, with light glinting from its pushed-in dome

    Frankly, that works poorly for me and the entire user community. The whole point of this framework is to let me re-skin the UI without re-hacking the underlying code; the buttons aren’t the limiting factor right now.

    Anyhow.

    The three buttons in each column are mutually exclusive radio buttons, but singleton checkbox buttons for firmware switches / modes would also be helpful, so there’s motivation to be a bit more general.

    A struct defines each button:

    enum bstatus_t {BT_DISABLED,BT_UP,BT_DOWN};
    
    typedef void (*pBtnFn)(byte BID);		// button action function called when hit
    
    struct button_t {
    	byte ID;					// button identifier, 0 unused
    	byte Group;					// radio button group, 0 for none
    	byte Status;				// button status
    	word ulX,ulY;				// origin: upper left
    	word szX,szY;				// button image size
    	pBtnFn pAction;				// button function
    	char NameStem[9];			// button BMP file name - stem only
    };
    

    The ID uniquely identifies each button in the rest of the code. That should be an enum, but for now I’m using an unsigned integer.

    The Group integer will be zero for singleton buttons and a unique nonzero value for each radio button group. Only one button in each Group can be pressed at a time.

    The Status indicates whether the button can be pushed and, if so, whether it’s up or down. Right now, the framework doesn’t handle disabled buttons at all.

    The next four entries define the button’s position and size.

    The pAction entry contains a pointer to the function that handles the button’s operation. It gets invoked whenever the touch screen registers a hit over the button, with an ID parameter identifying the button so you can use a single function for the entire group. I think it’ll eventually get another parameter indicating the desired Status, but it’s still early.

    The NameStem string holds the first part of the file name on the SD card. The framework prefixes the stem with a default directory (“/UserIntf/”), suffixes it with the Status value (an ASCII digit ‘0’ through ‘9’), tacks on the extension (“.bmp”), and comes up with the complete file name.

    An array of those structs defines the entire display:

    struct button_t Buttons[] = {
    	{ 1,	0, BT_UP,	  0,0,		 80,80,	DefaultAction,	"NdUp"},
    	{ 2,	0, BT_UP,	  0,80,		 80,80,	DefaultAction,	"NdAny"},
    	{ 3,	0, BT_DOWN,	  0,160,	 80,80,	DefaultAction,	"NdDn"},
    
    	{ 4,	2, BT_DOWN,	 80,0,		120,80,	DefaultAction,	"PdRun"},
    	{ 5,	2, BT_UP,	 80,80,		120,80,	DefaultAction,	"PdOne"},
    	{ 6,	2, BT_UP,	 80,160,	120,80,	DefaultAction,	"PdFol"},
    
    	{ 7,	3, BT_UP,	200,0,		 80,80,	DefaultAction,	"SpMax"},
    	{ 8,	3, BT_DOWN,	200,80,		 80,80,	DefaultAction,	"SpMed"},
    	{ 9,	3, BT_UP,	200,160,	 80,80,	DefaultAction,	"SpLow"},
    
    	{10,	0, BT_UP,	311,0,		  8,8,	CountColor,		"Res"}
    };
    
    byte NumButtons = sizeof(Buttons) / sizeof(struct button_t);
    

    Those values produce the screen shown in the picture. The first three buttons should be members of radio button group 1, but they’re singletons here to let me test that path.

    Contrary to what you see, the button ID values need not be in ascending order, consecutive, or even continuous. The IDs identify a specific button, so as long as they’re a unique number in the range 1 through 255, that’s good enough. Yes, I faced down a brutal wrong-variable error and then fixed a picket-fence error.

    The file name stems each refer to groups of BMP files on the SD card. For example, NdUp (“Needle stop up”) corresponds to the three files NdUp0.bmp, NdUp1.bmp, and NdUp2.bmp, with contents corresponding to the bstatus_t enumeration.

    The constant elements of that array should come from a configuration file on the SD card: wrap a checksum around it, stuff it in EEPROM, and then verify it on subsequent runs. A corresponding array in RAM should contain only the Status values, with the array index extracted from the EEPROM data. That would yank a huge block of constants out of the all-too-crowded RAM address space and, even better, prevents problems from overwritten values; a trashed function pointer causes no end of debugging fun.

    A more complex UI would have several such arrays, each describing a separate panel of buttons. There’s no provision for that right now.

    Next: functions to make it march…

  • Adafruit TFT LCD: Touch Screen Interface

    The Adafruit STMPE610 touch screen library wrangles data from the touch screen interface, but the raw results require cleanup before they’re useful. Here’s a start on the problem.

    Incidentally, the resistive touch screen works better than the capacitive one for a sewing machine interface used by a quilter, because cotton mesh quilter gloves have grippy silicone fingertips.

    During startup, my code dumps the touch values if it detects a press and stalls until the touch goes away:

    Kenmore 158 UI - startup
    Kenmore 158 UI – startup

    That’s actually green-on-black, the only colors a dot-matrix character display should have, but the image came out a bit overexposed.

    In this landscape orientation, the touch digitizer coordinate system origin sits in the lower left, with X vertical and Y horizontal, as shown by the (1476,1907) raw coordinate; that matches the LCD’s default portrait orientation. The digitizer’s active area is bigger than the LCD, extending a smidge in all directions and 6 mm to the right.

    The rotated LCD coordinate system has its origin in the upper left corner, with dot coordinates from (0,0) to (319,239); note that Y increases downward. The touch point sits about the same distance from the left and top edges, as indicated by the (154,157) cleaned coordinate.

    How this all works…

    This chunk defines the hardware and calibration constants, with the touch screen set up to use hardware SPI on an Arduino Mega1280:

    // Adafruit ILI9341 TFT LCD ...
    #define TFT_CS 10
    #define TFT_DC 9
    
    // ... with STMPE610 touch screen ...
    #define STMPE_CS 8
    
    // ... and MicroSD Card slot
    #define SD_CS 4
    
    //------------------
    // Globals
    
    Adafruit_STMPE610 ts =  Adafruit_STMPE610(STMPE_CS);
    Adafruit_ILI9341  tft = Adafruit_ILI9341(TFT_CS, TFT_DC);
    
    // Touchscreen extents in unrotated digitizer values
    // These should be in EEPROM to allow per-unit calibration
    
    TS_Point TS_Min(220,220,0);
    TS_Point TS_Max(3800,3700,0);
    

    The TS_Min and TS_Max values come from experimental twiddling with the Adafruit TouchTest demo code and correspond to the LCD’s active area in the digitizer’s raw coordinate system.

    Although the digitizer also produces a Z axis value corresponding to the touch pressure, I don’t use it, and, in any event, it has a tiny dynamic range.

    The initialization goes in setup():

    	Serial.print(F("TS... "));	// start touch screen early to let it wake up
    	if (ts.begin()) {
    		Serial.println(F("OK"));
    	}
    	else {
    		Serial.println(F("** NG"));
    		while(1) continue;
    	}
    

    As noted, the digitizer takes a while to wake up from a cold start, so I overlapped that time with the SD card and LCD initializations. Most likely, I should use a fixed delay, but I don’t know what would be a good value.

    With the LCD up & running, this code produces the touch screen values shown in the picture:

    	if (ts.touched() && !ts.bufferEmpty()) {	// hold display while touched
    		tp = ts.getPoint();
    		tft.print(" TS raw: (");
    		tft.print(tp.x);
    		tft.print(',');
    		tft.print(tp.y);
    		tft.println(')');
    		CleanTouch(&tp);						// different point, but should be close
    		tft.print(" TS clean: (");
    		tft.print(tp.x);
    		tft.print(',');
    		tft.print(tp.y);
    		tft.println(')');
    		while (ts.touched()) continue;
    		while (!ts.bufferEmpty()) ts.getPoint();
    	}
    

    The first while stalls until you stop pressing on the screen, whereupon the second drains the digitizer’s queue. You can reach inside the digitizer and directly reset the hardware, but that seems overly dramatic.

    CleanTouch() fetches the next point from the digitizer and returns a boolean indicating whether it got one. If it did, you also get back touch point coordinates in the LCD’s rotated coordinate system:

    #define TS_TRACE true
    
    boolean CleanTouch(TS_Point *p) {
    
    TS_Point t;
    
    // Sort out possible touch and data queue conditions
    
    	if (ts.touched())							// screen touch?
    		if (ts.bufferEmpty())					//  if no data in queue
    			return false;						//   bail out
    		else									//  touch and data!
    			t = ts.getPoint();					//   so get it!
    	else {										// no touch, so ...
    		while (!ts.bufferEmpty())				//  drain the buffer
    			ts.getPoint();
    		return false;
    	}
    
    #if TS_TRACE
    	printf("Raw touch (%d,%d)\r\n",t.x,t.y);
    #endif
    
    	t.x = constrain(t.x,TS_Min.x,TS_Max.x);					// clamp to raw screen area
    	t.y = constrain(t.y,TS_Min.y,TS_Max.y);
    
    #if TS_TRACE
        printf(" constrained (%d,%d)\r\n",t.x,t.y);
        printf(" TFT (%d,%d)\r\n",tft.width(),tft.height());
    #endif
    
    	p->x = map(t.y, TS_Min.y, TS_Max.y, 0, tft.width());		// rotate & scale to TFT boundaries
    	p->y = map(t.x, TS_Min.x, TS_Max.x, tft.height(), 0);		//   ... flip Y to put (0,0) in upper left corner
    
    	p->z = t.z;
    
    #if TS_TRACE
    	printf(" Clean (%d,%d)\r\n",p->x,p->y);
    #endif
    
    	return true;
    }
    

    The hideous conditional block at the start makes sure that the point corresponds to the current touch coordinate, by the simple expedient of tossing any and all stale data overboard. I think you could trick the outcome by dexterous finger dancing on the screen, but (so far) it delivers the expected results.

    The constrain() functions clamp the incoming data to the boundaries, to prevent the subsequent map() functions from emitting values beyond the LCD coordinate system.

    Note that t is in raw digitizer coordinates and p is in rotated LCD coordinates. The simple transform hardcoded into the map() functions sorts that out; you get to figure out different rotations on your own.

    The results of touching all four corners, starting in the upper left near the LCD origin and proceeding counterclockwise:

    Raw touch (3750,258)
     constrained (3750,258)
     TFT (320,240)
     Clean (3,4)
     No hit!
    Raw touch (274,231)
     constrained (274,231)
     TFT (320,240)
     Clean (1,237)
     No hit!
    Raw touch (145,3921)
     constrained (220,3700)
     TFT (320,240)
     Clean (320,240)
     No hit!
    Raw touch (3660,3887)
     constrained (3660,3700)
     TFT (320,240)
     Clean (320,10)
     No hit!
    

    The No hit! comments come from the button handler, which figures out which button sits under the touch point: all four touches occur outside of all the buttons, so none got hit. More on that later.

    Inside the main loop(), it goes a little something like this:

    if (CleanTouch(&pt)) {
    	BID = FindHit(pt);
    	if (BID) {
    		HitButton(BID);
    	}
    	while (ts.touched())									// stall waiting for release
    		ts.getPoint();
    	}
    

    The while() loop stalls until the touch goes away, which ensures that you don’t get double taps from a single press; it may leave some points in the queue that CleanTouch() must discard when it encounters them without a corresponding touch.

    All in all, it seems to work pretty well…

  • Adafruit TFT LCD: Color Indicator Spots

    These spots might come in handy as status indicators and tiny mode control buttons:

    Resistor Color Code Spots
    Resistor Color Code Spots

    The montage is 800% of the actual 8×8 pixel size that’s appropriate for the Adafruit TFT LCD.

    They’re generated from the standard colors, with the “black” patch being a dark gray so it doesn’t vanish:

    # create resistor-coded color spots
    # Ed Nisley - KE4ZNU
    # January 2015
    
    SZ=8x8
    
    convert -size $SZ canvas:gray10 -type truecolor Res0.bmp
    convert -size $SZ canvas:brown	-type truecolor Res1.bmp
    convert -size $SZ canvas:red	-type truecolor Res2.bmp
    convert -size $SZ canvas:orange	-type truecolor Res3.bmp
    convert -size $SZ canvas:yellow -type truecolor Res4.bmp
    convert -size $SZ canvas:green	-type truecolor Res5.bmp
    convert -size $SZ canvas:blue	-type truecolor Res6.bmp
    convert -size $SZ canvas:purple	-type truecolor Res7.bmp
    convert -size $SZ canvas:gray80	-type truecolor Res8.bmp
    convert -size $SZ canvas:white	-type truecolor Res9.bmp
    
    montage Res*bmp -tile 5x -geometry +2+2 -resize 800% Res.png
    

    For a pure indicator, it’d be easier to slap a spot on the screen with the Adafruit GFX library’s fillRect() function. If you’re setting up a generic button handler, then button bitmap images make more sense.

  • Adafruit TFT Shield: Firmware Heartbeat Spot

    Being that type of guy, I want a visible indication that the firmware continues trudging around the Main Loop.  The standard Arduino LED works fine for that (unless you’re using hardware SPI), but the Adafruit 2.8 inch Touch-screen TFT LCD shield covers the entire Arduino board, so I can’t see the glowing chip.

    Given a few spare pixels and the Adafruit GFX library, slap a mood light in the corner:

    Adafruit TFT - heartbeat spot
    Adafruit TFT – heartbeat spot

    The library defines the RGB color as a 16 bit word, so this code produces a dot that changes color every half second around the loop() function:

    #define PIN_HEARTBEAT 13
    
    unsigned long MillisThen,MillisNow;
    #define UPDATEMS 500
    
    ... snippage ...
    
    void loop() {
    	MillisNow = millis();
    
    ... snippage ...
    
    	if ((MillisNow - MillisThen) > UPDATEMS) {
    
    		TogglePin(PIN_HEARTBEAT);
    		tft.fillCircle(315,235,4,(word)MillisNow);			// colorful LCD heartbeat
    
    		MillisThen = MillisNow;
    	}
    }
    

    millis() produces an obvious counting sequence of colors. If that matters, you use random(0x10000).

    A square might be slightly faster than a circle. If that matters, you need an actual measurement in place of an opinion.

    Not much, but it makes me happy…

    There’s an obvious extension for decimal values: five adjacent spots in the resistor color code show you an unsigned number. Use dark gray for black to prevent it from getting lost; light gray and white would be fine. Prefix it with a weird color spot for the negative sign, should you need such a thing.

    Hexadecimal values present a challenge. That’s insufficient justification to bring back octal notation.

    In this day and age, color-coded numeric readouts should be patentable, as casual searching didn’t turn up anything similar. You saw it here first… [grin]

    Now that I think about it, a set of tiny buttons that control various modes might be in order.

  • Kenmore 158 UI: Automatic Button Builder

    Given the glacially slow Arduino touch-screen TFT display as a first pass UI for the Kenmore 158 sewing machine, I need some UI elements.

    I need buttons. Lots of buttons.

    Each button will have several different states that must be visually distinct:

    • Disabled – not available for pressing
    • Released – can be pressed and is inactive
    • Pressed – has been pressed and is now active

    There may be other states, but those should be enough to get started.

    I’d rather not draw that detail by hand for each button, so some tinkering with the Bash script driving the Imagemagick routines produced these results:

    Buttons
    Buttons

    Aren’t those just the ugliest buttons you’ve ever seen?

    The garish colors identify different functions, the crude shading does a (rather poor) job of identifying the states, and the text & glyphs should be unambiguous in context. Obviously, there’s room for improvement.

    The point is that I can begin building the UI code that will slap those bitmaps on the Arduino’s touch-panel LCD while responding to touches, then come back and prettify the buttons as needed. With a bit of attention to detail, I should be able to re-skin the entire UI without building the data into the Arduino sketch, but I’ll start crude.

    The mkAll.sh script that defines the button characteristics and calls the generator script:

    ./mkBFam.sh NdDn springgreen4 ⤓
    ./mkBFam.sh NdUp springgreen4 ⤒
    ./mkBFam.sh NdAny springgreen4 ⟳ 80 80 40
    ./mkBFam.sh PdOne sienna One 120 80
    ./mkBFam.sh PdFol sienna Follow 120 80
    ./mkBFam.sh PdRun sienna Run 120 80
    ./mkBFam.sh SpMax maroon1  🏃 80 80 40
    ./mkBFam.sh SpMed maroon2  🐇 80 80 40
    ./mkBFam.sh SpLow maroon3  🐌
    montage *bmp -tile 3x -geometry +2+2 Buttons.png
    display Buttons.png
    

    As before, if you don’t see rabbit and snail glyphs, then your fonts don’t cover those Unicode blocks.

    The quick-and-dirty mkBFam.sh script that produces three related buttons for each set of parameters:

    # create family of simple beveled buttons
    # Ed Nisley - KE4ZNU
    # January 2015
    
    [ -z $1 ] && FN=Test || FN=$1
    [ -z $2 ] && CLR=red || CLR=$2
    [ -z $3 ] && TXT=x   || TXT=$3
    [ -z $4 ] && SX=80   || SX=$4
    [ -z $5 ] && SY=80   || SY=$5
    [ -z $6 ] && PT=25   || PT=$6
    [ -z $7 ] && BDR=10  || BDR=$7
    
    echo fn=$FN clr=$CLR txt=$TXT sx=$SX sy=$SY pt=$PT bdr=$BDR
    
    echo Working ...
    
    echo Shape
    convert -size ${SX}x${SY} xc:none \
    -fill $CLR -draw "roundrectangle $BDR,$BDR $((SX-BDR)),$((SY-BDR)) $((BDR-2)),$((BDR-2))" \
    ${FN}_s.png
    
    echo Highlights
    convert ${FN}_s.png \
      \( +clone -alpha extract -blur 0x12 -shade 110x2 \
      -normalize -sigmoidal-contrast 16,60% -evaluate multiply .5\
      -roll +4+8 +clone -compose Screen -composite \) \
      -compose In  -composite \
      ${FN}_h.png
    
    convert ${FN}_s.png \
      \( +clone -alpha extract -blur 0x12 -shade 110x0 \
      -normalize -sigmoidal-contrast 16,60% -evaluate multiply .5\
      -roll +4+8 +clone -flip -flop -compose Screen -composite \) \
      -compose In  -composite \
      ${FN}_l.png
    
    echo Borders
    convert ${FN}_h.png \
      \( +clone -alpha extract  -blur 0x2 -shade 0x90 -normalize \
      -blur 0x2  +level 60,100%  -alpha On \) \
      -compose Multiply -composite \
       ${FN}_bh.png
    
    convert ${FN}_l.png \
      \( +clone -alpha extract  -blur 0x2 -shade 0x90 -normalize \
      -blur 0x2  +level 60,100%  -alpha On \) \
      -compose Multiply -composite \
       ${FN}_bl.png
    
    echo Buttons
    convert ${FN}_s.png \
      -font /usr/share/fonts/custom/Symbola.ttf  -pointsize ${PT}  -fill black  -stroke black \
      -gravity Center  -annotate 0 "${TXT}"  -trim -repage 0x0+7+7 \
      \( +clone -background navy -shadow 80x4+4+4 \) +swap \
      -background snow4  -flatten \
      ${FN}0.png
    
    convert ${FN}_bl.png \
      -font /usr/share/fonts/custom/Symbola.ttf  -pointsize ${PT}  -fill black  -stroke black \
      -gravity Center  -annotate 0 "${TXT}"  -trim -repage 0x0+7+7 \
      \( +clone -background navy -shadow 80x4+4+4 -flip -flop \) +swap \
      -background snow4  -flatten \
      ${FN}1.png
    
    convert ${FN}_bh.png \
      -font /usr/share/fonts/custom/Symbola.ttf  -pointsize $PT  -fill black  -stroke black \
      -gravity Center  -annotate 0 "${TXT}"  -trim -repage 0x0+7+7 \
      \( +clone -background navy -shadow 80x4+4+4 \) +swap \
      -background snow4  -flatten \
      ${FN}2.png
    
    echo BMPs
    for ((i=0 ; i <= 2 ; i++))
    do
     convert ${FN}${i}.png -type truecolor ${FN}${i}.bmp
    # display -resize 300% ${FN}${i}.bmp
    done
    
    echo Done!
    

    Now, to get those bitmaps from the SD card into the proper place on the LCD panel…

  • Kenmore 158: Useful Unicode Glyphs

    It turns out, for some reasons that aren’t relevant here, that I’ll be using the Adafruit Arduino LCD panel for the sewing machine control panel, at least to get started. In mulling that over, the notion of putting text on the buttons suggests using getting simple pictures with Unicode characters.

    Herewith, some that may prove useful:

    • Needle stop up: ↥ = U+21A5
    • Needle stop up: ⤒=U+2912
    • Needle stop down: ⤓ = U+2913
    • Needle stop any: ↕ = U+2195
    • Needle stop any: ⟳ = U+27F3
    • Needle stop any: ⇅ = U+21C5
    • Rapid speed: ⛷ = U+26F7 (skier)
    • Rapid speed: 🐇  = U+1F407 (rabbit)
    • Slow speed: 🐢 = U+1F422 (turtle)
    • Dead slow: 🐌 = U+1F40C (snail)
    • Maximum speed: 🏃 = U+1F3C3 (runner)
    • Bobbin: ⛀ = U+26C0 (white draughts man)
    • Bobbin: ⛂ = U+26C2 (black draughts man)
    • Bobbin winding: 🍥 = U+1F365 (fish cake with swirl)

    Of course, displaying those characters require a font with deep Unicode support, which may explain why your browser renders them as gibberish / open blocks / whatever. The speed glyphs look great on the Unicode table, but none of the fonts around here support them; I’m using the Droid font family to no avail.

    Blocks of interest:

    The links in the fileformat.info table of Unicode blocks lead to font coverage reports, but I don’t know how fonts get into those reports. The report for the Miscellaneous Symbols block suggested the Symbola font would work and a test with LibreOffice show it does:

    Symbola font test
    Symbola font test

    An all-in-one-page Unicode symbol display can lock up your browser hard while rendering a new page.

    Unicode is weird