The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Tag: Improvements

Making the world a better place, one piece at a time

  • Juki TL-2010Q Needle LEDs: Installed!

    The combined illumination from the COB LED bar on the rear of the arm and the (renewed) COB LEDs over the needle does a pretty good job of lighting up the work area:

    Juki TL-2010Q Needle LEDs - cloth illumination
    Juki TL-2010Q Needle LEDs – cloth illumination

    That’s a staged shot with a quilt square from the top of the pile. You’d (well, Mary’d) sew along the lines, not across a finished square.

    The remaining deep shadows under the foot require an LED with an imaging lens on a gooseneck; precise piecing requires feeding fabric into the needle with alignment exactly where those shadows fall.

    The light levels look harsh and shadowy on the bare base:

    Juki TL-2010Q Needle LEDs - front
    Juki TL-2010Q Needle LEDs – front

    The shadow extending leftward from the needle comes from the arm’s shadow of the rear LED bar. The hotspot specular reflections of both LED arrays aren’t quite as glaring in real life, but a matte surface finish would be better.

    The needle LEDs sit on the bottom of the heatsink inside the endcap:

    Juki TL-2010Q Needle LEDs - installed
    Juki TL-2010Q Needle LEDs – installed

    The COB LED PCB has a weird pink tint, perhaps due to the silicone filter passing all the yellow and blue light downward, with red light reflected into the PCB.

    After one iteration, I settled on a 20 Ω 1 W ballast resistor:

    Juki TL-2010Q Needle LEDs - ballast resistor
    Juki TL-2010Q Needle LEDs – ballast resistor

    It drops 3.6 V to provide 180 mA of needle LED current and dissipates 640 mW, with the LEDs burning about 1.5 W to raise the heatsink just above room temperature. The extrusion on the rear arm is pleasantly warm and the resistors seem happy enough.

    Looks good to us and it’s much much much better than the feeble Juki needle LED.

  • Juki TL-2010Q Needle LEDs: Trial Fit

    Stripping the components from the back of a “5 W” COB LED gets it ready for action:

    G4 COB LED PCB - stripped
    G4 COB LED PCB – stripped

    Jumpering the pads with nickel strips harvested from various NiMH and lithium cells restores the original contact pads to service:

    Juki TL-2010Q Needle LEDs - COB LED jumpers
    Juki TL-2010Q Needle LEDs – COB LED jumpers

    A bit of bandsaw artistry produced a replacement for the OEM LED bracket:

    Juki TL-2010Q Needle LEDs - trial installation
    Juki TL-2010Q Needle LEDs – trial installation

    The epxoy bonding the LED to the heatsink happens a few paragraphs ahead in this story, but the view justifies it. The 2 mm hole just to the right of the 3 mm SHCS aligns the heatsink to a pin in the machine’s frame, ensuring it doesn’t twist around under vibration.

    The view from below (in a mirror on the machine’s bed) shows the COB LED just barely fits in the opening:

    Juki TL-2010Q Needle LEDs - trial fit
    Juki TL-2010Q Needle LEDs – trial fit

    I screwed the bare heatsink into the Juki, applied double-stick tape to the COB LED, aligned LED with opening, and stuck it in place. Back in the shop, I traced around the LED to figure out what part of the heatsink needed removing, introduced it to Mr Disk Sander, and contoured it to match the LED.

    Clean everything with denatured alcohol, put the heatsink on a glass plate, and clamp it to the height gauge:

    Juki TL-2010Q Needle LEDs - heatsink alignment
    Juki TL-2010Q Needle LEDs – heatsink alignment

    Butter up the LED PCB with JB Kwik epoxy, having previously masked the contact pads (with masking tape!) to prevent oopsies:

    Juki TL-2010Q Needle LEDs - epoxy on COB LED
    Juki TL-2010Q Needle LEDs – epoxy on COB LED

    Raise the height gauge, align LED & heatsink, lower height gauge to squish epoxy into an even layer, raise slightly to ensure the aluminum heatsink doesn’t short the nickel strips, and fast forward a few hours:

    Juki TL-2010Q Needle LEDs - heatsink curing
    Juki TL-2010Q Needle LEDs – heatsink curing

    Peel off the masking tape and solder a cable in place:

    Juki TL-2010Q Needle LEDs - cable installation
    Juki TL-2010Q Needle LEDs – cable installation

    The transparent doodad around the cable is a PET clamp snipped from a consumer electronics clamshell package, then punched and folded to suit. It didn’t work particularly well, so more rummaging will be required.

    Foreshadowing: all this went swimmingly and looks pretty good (in a techie sort of way), but I’ve been running a nasty cold (stipulated: there being no pleasant colds). Building While Stupid is never a good idea, as the part of your brain in charge of telling you you’re about to do something catastrophically wrong is the first thing to go.

    More to come …

  • Astable Multivibrator: DSO150 vs. Fast Blinky

    A bipolar transistor version of the astable multivibrator with a yellow Pirhana LED required absurdly large capacitors for a reasonable blink rate and, seeing as how I need a demo circuit for Show-n-Tells, it seemed a good candidate for a faster blink. I replaced a 100 µF cap with the 22 µF electrolytic cap from the other side, installed a 2 µF cap (which, judging from the lack of polarity indicators, may be a film cap) from the Squidwrench junk heap parts bin in its place, and hitched up the DSO150 because I brought it along:

    DSO150 with fast LED blinky
    DSO150 with fast LED blinky

    Worked the first time and caught it in mid-blink! [grin]

    The DSO150’s triggering remains a mystery, as it seems difficult to get a stable trace from a perfectly reasonable waveform. The scope didn’t trigger well on the astable’s original seconds-long pulses, perhaps due to a DC blocking cap in the triggering circuitry (whatever it may look like), but this waveform should be dead simple.

    Having gained a visceral understanding of why MOSFET astables produce better battery life, this bipolar transistor design is just a milestone along the way.

  • Juki TL-2010Q LED

    For the record, Juki thinks this SMD LED provides enough light around the needle of Mary’s TL-2010Q sewing machine:

    Juki TL-2010Q - OEM LED light
    Juki TL-2010Q – OEM LED light

    A detailed look at the active ingredient:

    Juki TL-2010Q - OEM SMD LED
    Juki TL-2010Q – OEM SMD LED

    The 30 Ω resistor drops exactly 2.0 V, so the white LED runs at 67 mA.

    We think it’s a glowworm, compared to the COB LED bar across the back of the arm:

    Juki TL-2010Q COB LED - installed - rear view
    Juki TL-2010Q COB LED – installed – rear view

    I can do better than that, although not with juice from their 5 V power supply.

  • Sewing Machine Light Bar Current

    After more use and brightness tweaking, the COB light bars on the Juki TL-2010Q and Kenmore 158 now have 2.2 Ω ballast resistors setting the LED current to 370 mA and 300 mA, respectively:

    Juki TL-2010Q COB LED - 2.2 ohm header
    Juki TL-2010Q COB LED – 2.2 ohm header

    Changing from 2.0 Ω to 2.2 Ω produces a noticeable decrease in light, so 10% steps around 2 Ω seem to be about the right increment. The COB LED strips claim 6 W at 12 V = 500 mA nominal, so they’re running well under the spec.

    Given that cheap 1% metal film resistor assortments use E6 or E12 value steps, at best, we may need two resistors in parallel for the next adjustments.

  • SJCAM M20 Camera: Tour Easy Seat Mount

    The general idea is to replace this:

    M20 in waterproof case - Tour Easy seat
    M20 in waterproof case – Tour Easy seat

    With this:

    SJCAM M20 Mount - Tour Easy side view
    SJCAM M20 Mount – Tour Easy side view

    Thereby solving two problems:

    • Pitifully small battery capacity
    • Wobbly camera support

    The battery is an Anker PowerCore 13000 Power Bank plugged into the M20’s USB port. Given that SJCAM’s 1 A·h batteries barely lasted for a typical hour of riding, the 13 A·h PowerCore will definitely outlast my legs. The four blue dots just ahead of the strap around the battery show it’s fully charged and the blue light glowing through the case around the M20 indicates it’s turned on.

    The solid model has four parts:

    SJCAM M20 Mount - Fit layout
    SJCAM M20 Mount – Fit layout

    Which, as always, incorporates improvements based on the actual hardware on the bike.

    A strap-and-buckle belt harvested from a defunct water pack holds the battery into the cradle and the cradle onto the rack, with a fuzzy velcro strip stuck to the bottom to prevent sliding:

    SJCAM M20 Mount - Tour Easy rear view
    SJCAM M20 Mount – Tour Easy rear view

    The shell around the camera is basically a box minus the camera:

    SJCAM M20 Mount - Show - shell
    SJCAM M20 Mount – Show – shell

    The shell builds as three separate slabs, with the center section having cutouts ahead of the camera’s projections to let it slide into place:

    SJCAM M20 Mount - Show - shell sections
    SJCAM M20 Mount – Show – shell sections

    The new shell version is 30.5 mm thick, so a 40 mm screw will stick out maybe 5 mm beyond the nylon locknut. I trust the screws will get lost in the visual noise of the bike.

    A peg sticking out behind the USB jack anchors the cable in place:

    SJCAM M20 Mount - Show - shell sections - USB side
    SJCAM M20 Mount – Show – shell sections – USB side

    The front slab and center top have curves matching the M20 case:

    SJCAM M20 Mount - Show - shell sections - button side
    SJCAM M20 Mount – Show – shell sections – button side

    The camera model has a tidy presentation option:

    SJCAM M20 Mount - Show - M20 body
    SJCAM M20 Mount – Show – M20 body

    And an ugly option to knock the protruberances out of the shell:

    SJCAM M20 Mount - Show - M20 body - knockouts
    SJCAM M20 Mount – Show – M20 body – knockouts

    The square-ish post on the base fits into an angled socket in the clamp around the seat rail:

    SJCAM M20 Mount - Show - clamp
    SJCAM M20 Mount – Show – clamp

    The numbers correspond to the “Look Angle” of the socket pointing the camera toward overtaking traffic. The -20° in the first clamp shows a bit too much rack:

    SJCAM M20 Mount - first ride - traffic - 2019-02-06
    SJCAM M20 Mount – first ride – traffic – 2019-02-06

    It may not matter, though, as sometimes you want to remember what’s on the right:

    SJCAM M20 Mount - first ride - 2019-02-06
    SJCAM M20 Mount – first ride – 2019-02-06

    FWIW, the track veering off onto the grass came from a fat-tire bike a few days earlier. Most of the rail trail had cleared by the time we tried it, with some ice and snow in rock cuts and shaded areas.

    Contrary to the first picture, I later remounted the camera under the seat rail with its top side downward. The M20 has a “rotate video” mode for exactly that situation, which I forgot to turn off in the fancy new mount, so I rotated the pix afterward.

    A 3 mm screw extends upward through the hole in the socket to meet a threaded brass insert epoxied into the shell base, as shown in the uglified M20 model. Despite appearances, the hole is perpendicular to both the socket and the shell, so you can tweak the Look Angle without reprinting the shell.

    All in all, the mount works well. We await better riding weather …

    The OpenSCAD source code as a GitHub Gist:

    // SJCAM M20 Camera Mount for Tour Easy seat back rail
    // Ed Nisley – KE4ZNU
    // 2019-02
    /* [Layout Options] */
    Layout = "Fit"; // [Show,Fit,Build]
    Part = "Shell"; // [Cradle,Shell,Clamp,ShellSections,M20,Interposer,Battery,Buttons]
    LookAngle = [0,5,-25]; // camera angle, looking backwards
    /* [Extrusion Parameters] */
    ThreadWidth = 0.40;
    ThreadThick = 0.25;
    HoleWindage = 0.2;
    Protrusion = 0.1;
    //—–
    // Dimensions
    /* [Hidden] */
    ID = 0;
    OD = 1;
    LENGTH = 2;
    ClampScrew = [5.0,10.0,50.0]; // ID=thread OD=washer LENGTH=total
    ClampInsert = [5.0,7.5,10.5]; // brass insert
    MountScrew = [3.0,7.0,23]; // ID=thread OD=washer LENGTH=tune to fit clamp arch
    MountInsert = [3.0,4.95,8.0]; // ID=screw OD, OD=knurl dia
    EmbossDepth = 2*ThreadThick + Protrusion; // recess depth + Protrusion beyond surface
    DebossHeight = EmbossDepth; // text height + Protrusion into part
    Projection = 10; // stick-out to punch through shell sides & suchlike
    SupportColor = "Yellow";
    FadeColor = "Green";
    FadeAlpha = 0.25;
    //—–
    // Useful routines
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    module PolyCyl(Dia,Height,ForceSides=0) { // based on nophead's polyholes
    Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    FixDia = Dia / cos(180/Sides);
    cylinder(r=(FixDia + HoleWindage)/2,
    h=Height,
    $fn=Sides);
    }
    //—–
    // M20 Camera
    // Looks backwards from seat = usual right-hand coordinates work fine
    // X parallel to bike frame, Y parallel to seat strut, Z true vertical
    M20 = [24.5,40.5,54.0];
    M20tm = 4.0; // chord height at top of case
    M20tr = (pow(M20tm,2) + pow(M20.y,2)/4) / (2*M20tm); // … radius
    echo(str("Top radius: ",M20tr));
    M20TopSides = 3*3*4;
    echo(str(" … sides: ",M20TopSides));
    M20fm = 1.0; // chord height at front of case
    M20fr = (pow(M20fm,2) + pow(M20.y,2)/4) / (2*M20fm); // … radius
    echo(str("Front radius: ",M20fr));
    M20FrontSides = ceil(M20fr / M20tr * M20TopSides); // make arc sides match up
    echo(str(" … sides: ",M20FrontSides));
    Lens = [19.0,22.5,5.5]; // ID=optical element, OD=tube
    LensBezel = [23.0,24.5,2.5]; // ID=lens tube, OD=bezel
    LensOffset = [-M20fm,0,41.5]; // bottom of case to lens centerline
    LensCap = [Lens[OD],24.5,4.5]; // silicone lens cap
    Spkr = [0.75,M20.y,14.3]; // speaker recess below LCD
    Switch = [8.0,1.0,38.0]; // selection switches
    SwitchOffset = [9.0,0,0]; // from rear to center of switches
    Jack = [10.0,0.1,36.0]; // jack and MicroSD card access, slightly enlarged
    JackOffset = [10.0,0,30.0]; // rear, bottom to center of jack block
    USB = [JackOffset.x – Jack.x/2,20.0,10.0]; // strut under USB plug
    USBOffset = [0,0,33.5]; // bottom to center of jack
    SDCard = [2.0,0.1,12.0]; // SD Card slot
    SDOffset = [9.0,0,20.0]; // bottom, rear to center of slot
    Button = [8.5,10.5,M20tm]; // ID = button, OD = bezel
    ButtonOC = 18.0; // on-center Y separation, assume X centered
    Screen = [0.1,31,24]; // LCD on rear face
    ScreenOffset = [0,0,33];
    BarLEDs = [0.1 + M20fm,12.0,5.0]; // Bar LEDs on front face
    BarLEDsOffset = [-M20fm,0,12.5];
    PwrLED = [3.5,3.5,0.1 + M20tm]; // power LED on top
    PwrLEDOffset = [2.5,0,0];
    RearLEDs = [1.0,2.0,0.1]; // charge and power LED openings above LCD
    RearLEDsOffset = [0,13.0/2,M20tm + 3.0]; // .. from top center of case
    module Buttons(KO) {
    for (j = [-1,1])
    translate([0,j*ButtonOC/2,0]) {
    cylinder(d=Button[OD],h=Button[LENGTH],$fn=12);
    if (KO)
    translate([0,0,M20tm])
    cylinder(d1=Button[OD],d2=1.5*Button[OD],h=Button.z,$fn=12);
    }
    }
    module M20Shape(Knockout = false) {
    difference() {
    intersection() {
    translate([0,0,M20.z/2 – M20tr]) // top curve
    rotate([0,90,0]) rotate(180/M20TopSides)
    cylinder(r=M20tr,h=2*(M20.x + Protrusion),$fn=M20TopSides,center=true);
    translate([M20.x/2 – M20fr,0,0])
    rotate(180/M20FrontSides)
    cylinder(r=M20fr,h=2*M20.z,$fn=M20FrontSides,center=true);
    cube(M20,center=true);
    }
    translate([Spkr.x/2 – M20.x/2 – Protrusion,0,Spkr.z/2 – Protrusion/2 – M20.z/2])
    cube(Spkr + [Protrusion,2*Protrusion,Protrusion],center=true);
    }
    translate([M20.x/2,0,-M20.z/2] + LensOffset)
    rotate([0,90,0])
    cylinder(d=Lens[OD] + HoleWindage,h=(Knockout ? Projection : Lens[LENGTH]),$fn=4*4*3,center=false);
    translate([M20.x/2 + M20fm/2,0,-M20.z/2] + LensOffset) // lens bezel
    rotate([0,90,0])
    cylinder(d1=LensBezel[OD],d2=Lens[OD],h=LensBezel[LENGTH],$fn=4*4*3,center=false);
    translate([-M20.x/2 + SwitchOffset.x, // side switches
    -(Switch.y + M20.y – Protrusion)/2,
    0])
    cube(Switch + [0,Protrusion,0] + (Knockout ? [0,Projection,0] : [0,0,0]),center=true);
    if (Knockout)
    translate([(M20.x/2 – M20fm)/2,-M20.y/2,0]) // side switch slide-in clearance
    cube([M20.x/2 – M20fm,2*Switch.y,Switch.z],center=true);
    translate([-M20.x/2 + JackOffset.x,
    (Jack.y + M20.y – Protrusion)/2,
    JackOffset.z – M20.z/2])
    cube(Jack + [0,Protrusion,0] + (Knockout ? [0,Projection,0] : [0,0,0]),center=true);
    translate([0,0,M20.z/2 – M20tm]) // top control buttons
    Buttons(Knockout);
    if (Knockout)
    translate([(M20.x – M20fm)/4,0,M20.z/2 – M20tm + Button[LENGTH]/2]) // slide-in button clearance
    cube([(M20.x – M20fm)/2,ButtonOC + Button[OD],Button[LENGTH]],center=true);
    translate([-(M20.x + Screen.x – Protrusion)/2,0,-M20.z/2] + ScreenOffset)
    cube(Screen + [Protrusion,0,0] + (Knockout ? [Projection,0,0] : [0,0,0]),center=true);
    for (j = [-1,1])
    translate([-M20.x/2 + Protrusion,j*RearLEDsOffset.y,M20.z/2 – RearLEDsOffset.z])
    rotate([0,-90,0]) rotate(180/6)
    PolyCyl(RearLEDs[OD],Knockout ? Projection : RearLEDs[LENGTH],6);
    translate([M20.x/2 + BarLEDs.x/2,0,-M20.z/2] + BarLEDsOffset)
    cube(BarLEDs + (Knockout ? [Projection,0,0] : [0,0,0]),center=true);
    translate([0,0,M20.z/2 – M20tm] + PwrLEDOffset)
    rotate(180/8)
    PolyCyl(PwrLED[OD],(Knockout ? Projection : PwrLED[LENGTH]),8);
    if (Knockout) {
    translate([0,0,-M20.z/2])
    rotate([180,0,0]) { // mounting screw
    PolyCyl(MountScrew[ID],MountScrew[LENGTH],6);
    translate([0,0,MountScrew[LENGTH] – Protrusion])
    PolyCyl(MountScrew[OD],MountScrew[ID] + 4*ThreadThick,6); // SHCS head is about 1 ID long
    }
    translate([0,0,-(M20.z/2 + MountInsert[LENGTH] + 4*ThreadWidth – Protrusion)])
    PolyCyl(MountInsert[OD],MountInsert[LENGTH] + 4*ThreadWidth,6); // insert inside Interposer
    }
    }
    //—–
    // Shell
    // Wraps around camera
    NomWall = 3.0;
    ShellWall = [IntegerMultiple(NomWall,ThreadThick),
    IntegerMultiple(NomWall,ThreadWidth),
    IntegerMultiple(NomWall,ThreadWidth)];
    ShellRadius = ShellWall.x;
    ShellSides = 8;
    ShellOA = M20 + 2*ShellWall;
    echo(str("Shell OA: ",ShellOA));
    Interposer = [M20.x – M20fm,M20.x – M20fm,10.0]; // if you can't be smart, be square
    module Shell() {
    Screw = [3.0,6.75,30]; // ID=thread OD=washer LENGTH
    ScrewClear = 1.0; // additional washer clearance
    ScrewSides = 8;
    ScrewOC = M20 + [0,Screw[ID]/cos(180/ScrewSides),Screw[ID]/cos(180/ScrewSides)]; // use PolyCyl hole dia, ignore .x value
    difference() {
    union() {
    hull()
    for (i=[-1,1], j=[-1,1], k=[-1,1])
    translate([i*(ShellOA.x – 2*ShellRadius)/2,
    j*(ShellOA.y – 2*ShellRadius)/2,
    k*(ShellOA.z – 2*ShellRadius)/2])
    sphere(r=ShellRadius/cos(180/ShellSides),$fn=ShellSides); // fix low-poly approx radius
    for (j=[-1,1], k=[-1,1]) // screw bosses, full length
    translate([0,j*ScrewOC.y/2,k*ScrewOC.z/2])
    rotate([0,90,0]) rotate(180/ScrewSides)
    cylinder(d=Screw[OD] + ScrewClear,h=ShellOA.x,center=true,$fn=ScrewSides);
    translate([-(ShellOA.x – USB.x – ShellWall.x)/2, // USB plug support strut
    (M20.y + USB.y)/2 – ShellRadius,
    -M20.z/2] + USBOffset)
    hull()
    for (i=[-1,1], j=[-1,1], k=[-1,1])
    translate([i*(USB.x + ShellWall.x – 2*ShellRadius)/2,
    j*(USB.y – 2*ShellRadius)/2,
    k*(USB.z – 2*ShellRadius)/2])
    rotate(0*180/ShellSides) rotate([90,0,90])
    sphere(r=ShellRadius/cos(180/ShellSides),$fn=ShellSides);
    translate([-M20fm/2,0,-ShellOA.z/2 – Interposer.z + Protrusion/2])
    InterposerShape(Embiggen = false);
    }
    render(convexity=4) // remove camera shape from interior
    M20Shape(Knockout = true);
    for (j=[-1,1], k=[-1,1]) // screw bores
    translate([-ShellOA.x,j*ScrewOC.y/2,k*ScrewOC.z/2])
    rotate([0,90,0]) rotate(180/ScrewSides)
    PolyCyl(Screw[ID],2*ShellOA.x,ScrewSides);
    translate([ShellOA.x/2 – ThreadThick + Protrusion/2,0,-5]) // recess for legend
    cube([EmbossDepth,ShellOA.y – 12,7],center=true);
    translate([0,(M20.y + 1.5*SDCard.z)/2 + ThreadWidth,-M20.z/2 + SDOffset.z])
    resize([M20.x,0,0])
    sphere(d=1.5*SDCard.z,$fn=24);
    }
    translate([ShellOA.x/2 – DebossHeight,0,-5])
    rotate([90,0,90])
    linear_extrude(height=DebossHeight,convexity=20)
    text(text="KE4ZNU",size=5,spacing=1.20,font="Arial:style:Bold",halign="center",valign="center");
    // Totally ad-hoc support structures
    if (false)
    color(SupportColor) {
    for (j=[-1,1], k=[0,1])
    translate([-ShellOA.x/2 + Screw[LENGTH],j*ShellOA.y/2,k*ShellOA.z])
    rotate([0,90,0])
    SupportScrew(Dia=Screw[OD] + ScrewClear,Length=ShellOA.x – Screw[LENGTH],Num=ScrewSides);
    }
    }
    // Generate support structure for screw boss
    module SupportScrew(Dia,Length,Num = 6) {
    for (a=[0 : 360/Num : 360/2])
    rotate(a)
    translate([0,0,(Length + ThreadThick)/2])
    cube([Dia – 2*ThreadWidth,2*ThreadWidth,Length – ThreadThick],center=true);
    }
    // Generate interposer block
    // Origin at center bottom surface for E-Z rotation
    module InterposerShape(Embiggen = false) {
    translate([0,0,Interposer.z/2])
    if (Embiggen) {
    minkowski() {
    cube(Interposer,center=true);
    cube(HoleWindage,center=true);
    }
    }
    else
    cube(Interposer + [-Protrusion,0,Protrusion],center=true); // avoid slivers, merge with shell
    }
    // Cut shell sections for printing
    // "Front" = lens end, toward +X direction
    // origin centered on M20.xyz and ShellOA.xyz
    module ShellSection(Section="Front") {
    if (Section == "Front") // include front curve
    intersection() {
    Shell();
    translate([ShellOA.x – (M20fm + ShellWall.x),0,0])
    cube([ShellOA.x,2*ShellOA.y,2*ShellOA.z],center=true);
    }
    else if (Section == "Center") // exclude front curve for E-Z printing
    intersection() {
    Shell();
    translate([-M20fm/2,0,0])
    cube([M20.x – M20fm,2*ShellOA.y,2*ShellOA.z],center=true);
    }
    else if (Section == "Back") // flush with LCD on rear face
    intersection() {
    Shell();
    translate([-ShellOA.x + (ShellWall.x),0,0])
    cube([ShellOA.x,2*ShellOA.y,2*ShellOA.z],center=true);
    }
    }
    //—–
    // Clamp
    // Grips seat frame rail
    // Uses shell rounding values for tidiness
    // Adjust MountScrew[LENGTH] to put head more-or-less flush with clamp arch
    RailOD = 20.0; // slightly elliptical in bent section
    RailSides = 2*3*4;
    ClampOA = [60.0,40.0,ClampScrew[LENGTH]]; // set clamp size to avoid weird screw spacing
    echo(str("Clamp OA: ",ClampOA));
    ClampOffset = 0.0; // raise clamp to allow more room for mount
    ClampTop = ClampOA.z/2 + ClampOffset;
    InsertCap = 6*ThreadThick; // fill layers atop inserts
    Kerf = 2.0;
    module Clamp(Support = false) {
    RibThick = 2*ThreadWidth;
    NumRibs = IntegerMultiple(ceil(ClampOA.y / 4.0),2); // space ribs roughly 4 mm apart
    RibSpace = ClampOA.y / NumRibs;
    echo(str("Ribs: ",NumRibs," spaced: ",RibSpace));
    ClampScrewOC = IntegerMultiple(ClampOA.x – ClampScrew[OD] – 10*ThreadWidth,1.0);
    echo(str("ClampScrew OC: ",ClampScrewOC));
    difference() {
    hull()
    for (i=[-1,1], j=[-1,1], k=[-1,1])
    translate([i*(ClampOA.x – 2*ShellRadius)/2,
    j*(ClampOA.y – 2*ShellRadius)/2,
    k*(ClampOA.z – 2*ShellRadius)/2 + ClampOffset])
    sphere(r=ShellRadius/cos(180/ShellSides),$fn=ShellSides);
    cube([2*ClampOA.x,2*ClampOA.y,Kerf],center=true); // split across middle
    rotate([90,0,0]) // seat rail
    cylinder(d=RailOD,h=2*ClampOA.y,$fn=RailSides,center=true);
    for (i=[-1,1]) // clamp inserts
    translate([i*ClampScrewOC/2,0,0])
    rotate(180/6)
    PolyCyl(ClampInsert[OD],ClampTop – InsertCap,6);
    for (i=[-1,1]) // clamp screw clearance
    translate([i*ClampScrewOC/2,0,-(ClampOA.z/2 – ClampOffset) – InsertCap])
    rotate(180/6)
    PolyCyl(ClampScrew[ID],ClampOA.z,6);
    translate([0,0,ClampTop + 0.7*Interposer.z]) // mounting bolt hole
    rotate(LookAngle)
    translate([0,0,ShellOA.z/2]) {
    M20Shape(Knockout = true);
    translate([0,0,-ShellOA.z/2 – Interposer.z])
    InterposerShape(Embiggen = true);
    }
    translate([ClampOA.x/2 – (EmbossDepth – Protrusion)/2, // recess for LookAngle.z
    0,
    ClampOA.z/4 + ClampOffset])
    cube([EmbossDepth,17,8],center=true);
    translate([0.3*ClampOA.x, // recess for LookAngle.z
    -(ClampOA.y/2 – (EmbossDepth – Protrusion)/2),
    ClampOA.z/4 + ClampOffset])
    cube([10,EmbossDepth,8],center=true);
    translate([0,0,-ClampOA.z/2 + (EmbossDepth – Protrusion)/2]) // recess bottom legend
    cube([35,10,EmbossDepth],center=true);
    }
    translate([ClampOA.x/2 – DebossHeight,0,ClampOA.z/4 + ClampOffset]) // LookAngle.z legend
    rotate([90,0,90])
    linear_extrude(height=DebossHeight,convexity=20)
    text(text=str(LookAngle.z),size=6,spacing=1.20,
    font="Arial:style:Bold",halign="center",valign="center");
    translate([0.3*ClampOA.x,-ClampOA.y/2 + DebossHeight + Protrusion/2,ClampOA.z/4 + ClampOffset]) // LookAngle.y legend
    rotate([90,0,00])
    linear_extrude(height=DebossHeight,convexity=20)
    text(text=str(LookAngle.y),size=6,spacing=1.20,
    font="Arial:style:Bold",halign="center",valign="center");
    translate([0,0,-ClampOA.z/2])
    linear_extrude(height=DebossHeight,convexity=20)
    mirror([0,1,0])
    text(text="KE4ZNU",size=5,spacing=1.20,
    font="Arial:style:Bold",halign="center",valign="center");
    if (Support) {
    difference() {
    color(SupportColor)
    union() {
    for (j=[-NumRibs/2:NumRibs/2])
    translate([0,j*RibSpace,0])
    rotate([90,0,0])
    cylinder(d=RailOD – 2*ThreadThick,h=RibThick,$fn=2*3*4,center=true);
    cube([RailOD – 4*ThreadWidth,NumRibs*RibSpace,Kerf + 2*ThreadThick],center=true);
    }
    cube([2*ClampOA.x,2*ClampOA.y,Kerf],center=true); // split across middle
    }
    }
    }
    //—–
    // Battery
    // Based on Anker PowerCore, simplified shapes
    // Includes port & button punchouts
    Battery = [97.5,80.0,22.5]; // X=length, Y includes rounded edges, Z = Y dia
    module BatteryShape() {
    USB = [Projection,38,10]; // clearance around USB output ports
    USBOffset = [0,25.5,0]; // from -Y edge to center of USB block
    ChargeBtn = [11.0 + 5.0,10,5.0 + 5.0]; // charge level check button, enlarged
    Btnc = ChargeBtn.z; // figure button recess into battery curve
    Btnr = Battery.z/2;
    Btnm = Btnr – sqrt(pow(Btnr,2) – pow(Btnc,2)/4);
    ChargeBtnOffset = [17.0,0,0]; // from +X edge to center, centered on Z
    BatterySides = 2*3*4;
    hull()
    for (j=[-1,1])
    translate([0,j*(Battery.y – Battery.z)/2,0])
    rotate([0,90,0])
    cylinder(d=Battery.z,h=Battery.x,$fn=BatterySides,center=true);
    translate([(Battery.x + USB.x)/2 – Protrusion,-Battery.y/2 + USBOffset.y,0])
    cube(USB,center=true);
    translate([Battery.x/2 – ChargeBtnOffset.x,Battery.y/2 + ChargeBtn.y/2 – 2*Btnm,0])
    cube(ChargeBtn,center=true);
    }
    //—–
    // Battery cradle
    RackWidth = 89.0; // flat width between rack rails
    CradleWall = [4.0,4.0,3.0]; // wall thickness
    CradleRadius = 2.0; // corner rounding
    CradlePad = 0.5; // cushion around battery
    BatteryBase = CradleWall.z + CradlePad; // actual bottom surface of battery
    CradleOA = [Battery.x + 2*CradleWall.x,
    min((Battery.y + 2*CradleWall.y),RackWidth),
    BatteryBase + Battery.z/3];
    echo(str("Cradle OA: ",CradleOA));
    module Cradle() {
    difference() {
    hull()
    for (i=[-1,1], j=[-1,1]) { // box with tidy rounded corners
    translate([i*(CradleOA.x/2 – CradleRadius),
    j*(CradleOA.y/2 – CradleRadius),
    1*(CradleOA.z – CradleRadius)])
    sphere(r=CradleRadius,$fn=6);
    translate([i*(CradleOA.x/2 – CradleRadius),
    j*(CradleOA.y/2 – CradleRadius),
    0*(CradleOA.z/2 – CradleRadius)])
    cylinder(r=CradleRadius,h=CradleOA.z/2,$fn=6);
    }
    translate([0,0,Battery.z/2 + BatteryBase]) // minus the battery
    minkowski(convexity=3) { // … slightly embiggened
    BatteryShape();
    cube(2*CradlePad,center=true);
    }
    if (false) // reveal insets for debug
    translate([0,0,-Protrusion])
    cube(CradleOA + [0,0,CradleOA.z],center=false);
    translate([0,0,CradleWall.z – ThreadThick + Protrusion/2]) // recess top legend
    cube([55,20,EmbossDepth],center=true);
    translate([0,0,(EmbossDepth – Protrusion)/2]) // recess bottom legend
    cube([70,15,EmbossDepth],center=true);
    }
    translate([0,4.0,CradleWall.z – DebossHeight – Protrusion])
    linear_extrude(height=DebossHeight,convexity=20)
    text(text="PowerCore",size=6,spacing=1.20,
    font="Arial:style:Bold",halign="center",valign="center");
    translate([0,-4.0,CradleWall.z – DebossHeight – Protrusion])
    linear_extrude(height=DebossHeight,convexity=20)
    text(text="13000",size=6,spacing=1.20,
    font="Arial:style:Bold",halign="center",valign="center");
    linear_extrude(height=DebossHeight,convexity=20)
    mirror([0,1,0])
    text(text="KE4ZNU",size=10,spacing=1.20,
    font="Arial:style:Bold",halign="center",valign="center");
    }
    //—–
    // Build things
    // Layouts for design & tweaking
    if (Layout == "Show")
    if (Part == "Battery")
    BatteryShape();
    else if (Part == "Buttons")
    Buttons();
    else if (Part == "Interposer")
    InterposerShape(Embiggen = false);
    else if (Part == "Shell")
    Shell();
    else if (Part == "M20")
    M20Shape(Knockout = false);
    else if (Part == "ShellSections") {
    translate([ShellOA.x,0,0])
    ShellSection(Section="Front");
    translate([0,0,0])
    ShellSection(Section="Center");
    translate([-ShellOA.x,0,0])
    ShellSection(Section="Back");
    }
    else if (Part == "Clamp") {
    Clamp(Support = false);
    color(FadeColor,FadeAlpha)
    rotate([90,0,0])
    cylinder(d=RailOD,h=2*ClampOA.y,$fn=RailSides,center=true);
    }
    else if (Part == "Cradle") {
    Cradle();
    translate([0,0,Battery.z/2 + CradleWall.z])
    color(FadeColor,FadeAlpha)
    BatteryShape();
    }
    // Build layouts for top-level parts
    if (Layout == "Build")
    if (Part == "Cradle")
    Cradle();
    else if (Part == "Clamp") {
    translate([0,0.7*ClampOA.y,0])
    difference() {
    translate([0,0,-Kerf/2])
    Clamp(Support = true);
    translate([0,0,-ClampOA.z])
    cube(2*ClampOA,center=true);
    }
    translate([0,-0.7*ClampOA.y,-0])
    difference() {
    translate([0,0,-Kerf/2])
    rotate([0,180,0])
    Clamp(Support = true);
    translate([0,0,-ClampOA.z])
    cube(2*ClampOA,center=true);
    }
    }
    else if (Part == "Shell") {
    translate([0,-1.2*ShellOA.y,ShellOA.x/2])
    rotate([0,90,180])
    ShellSection(Section="Front");
    translate([0,0,M20.x/2])
    rotate([0,-90,0])
    ShellSection(Section="Center");
    translate([0,1.4*ShellOA.y,ShellOA.x/2])
    rotate([0,-90,180])
    ShellSection(Section="Back");
    }
    // Ad-hoc arrangement to see how it all goes together
    if (Layout == "Fit") {
    rotate(180) {
    Cradle();
    translate([0,0,Battery.z/2 + CradleWall.z])
    color(FadeColor,FadeAlpha)
    BatteryShape();
    }
    translate([0,-100,0]) {
    Clamp();
    color(FadeColor,FadeAlpha)
    rotate([90,0,0])
    cylinder(d=RailOD,h=2*ClampOA.y,$fn=RailSides,center=true);
    }
    translate([0,-100,(ClampOA.z + ShellOA.z)/2 + Interposer.z])
    translate([0,0,-ShellOA.z/2 + Interposer.z])
    rotate(LookAngle)
    translate([0,0,ShellOA.z/2]) {
    Shell();
    color(FadeColor,FadeAlpha)
    M20Shape(Knockout = false);
    }
    }
  • “5 W” G4 COB LED Specsmanship

    A bag of G4 COB LEDs arrived from halfway around the planet:

    G4 COB LEDs - 15 and 18 LED modules
    G4 COB LEDs – 15 and 18 LED modules

    Those are “5 W” and “4 W” cool white modules, respectively, with another set of 4 W warm white looking pretty much the same. There’s no provision for heatsinking, which makes the wattage seem suspect; halogen G4 bulbs run around 20 W, for whatever that’s worth.

    The silicone overlay becomes nearly transparent when seen through an ordinary desktop document scanner:

    Circular 12V COB 18 LED panel
    Circular 12V COB 18 LED panel

    Highlighting the PCB copper pours shows 18 LEDs arranged in three series groups of six LEDs in parallel:

    Circular 12V COB 18 LED panel - copper layout
    Circular 12V COB 18 LED panel – copper layout

    The “smart IC” touted in the writeup turns out to be a bridge rectifier for AC or DC power:

    G4 COB LED - 18 LED - components
    G4 COB LED – 18 LED – components

    The SMD resistors on all 15 modules measure 27.6 Ω, more or less, and seem randomly oriented face-up or face-down. I assume that one is face-down; maybe it’s just unlabeled on both sides.

    Back of the envelope: there’s no way it will dissipate 5 W. The bridge drops 1.4 V = 2×0.7, the LEDs drop maybe 9 V, leaving the resistor with 1.6 V to pass all of 60 mA, so call it 700 mW.

    Some measurements:

    G4 COB LED measurements
    G4 COB LED measurements

    With 12 VDC applied to the pins, the bridge drops 1.6 V, the LEDs 8.2 V, and the resistor 2.2 V, with 80 mA through the whole affair dissipating just under 1 W.

    Huh.

    Cranking the supply until the current hits 200 mA puts 15.7 V across the pins for a total dissipation of 3.1 W, burning 1.7 W in the LEDs and 1.1 W in the resistor.

    Cranking the supply to 21.3 V drives 410 mA, dissipates just under 9 W total, produces a curl of rosin smoke from the PCB, and maybe delaminates the silicone around some of the LEDs.

    OK, now I have a crash test dummy.

    Given complete control over the application, I’ll strip everything off the PCB and bond it to a heatsink of some sort. With 6 LEDs in parallel, 120 mA (6 × 20 mA) total current might be reasonable and 200 mA (6 × 30 mA) probably won’t kill the things outright. Plus, I have spares.

    An external 18 Ω resistor should suffice. Perhaps a pair of 6 Ω SMD resistors on the PCB, with fine-tuning through an external resistor. Call it 250 mW apiece: don’t use little bitty SMD resistors.