Advertisements

Posts Tagged Arduino

Raspberry Pi USB vs. Arduino

Plugging an Arduino with GRBL into a USB port on a Raspberry Pi 3 with bCNC causes an immediate crash: the Arduino doesn’t power up and the Raspberry Pi stops responding. A hardware reset / power cycle with the Arduino plugged in doesn’t improve the situation, so it seems the Arduino draws more current from the USB port than the default setup will allow.

Most likely, the Arduino’s 47 μF power supply caps draw too much current while charging, as the steady-state current seems to be around 40 mA:

RPi vs Arduino - USB current

RPi vs Arduino – USB current

The solution / workaround requires a tweak to /boot/config.txt:

#-- boost USB current for Arduino CNC

max_usb_current=1

# blank line above to reveal underscores

Update: As mentioned in the comments, the max_usb_current option doesn’t apply to the Pi 3 you see in the picture and, thus, shouldn’t have changed anything. Your guess is as good as mine.

I’d be more comfortable with a separate power supply plugged into the Arduino’s coaxial power jack, but that’s just me.

Advertisements

, , ,

2 Comments

Arduino Pseudo-Random White Noise Source

A reader (you know who you are!) proposed an interesting project that will involve measuring audio passbands and suggested using white noise to show the entire shape on a spectrum analyzer. He pointed me at the NOISE 1B Noise Generator based on a PIC microcontroller, which led to trying out the same idea on an Arduino.

The first pass used the low bit from the Arduino runtime’s built-in random() function:

Arduino random function bit timing

Arduino random function bit timing

Well, that’s a tad pokey for audio: 54 μs/bit = 18.5 kHz. Turns out they use an algorithm based on multiplication and division to produce nice-looking numbers, but doing that to 32 bit quantities takes quite a while on an 8 bit microcontroller teleported from the mid 1990s.

The general idea is to send a bit from the end of a linear feedback shift register to an output to produce a randomly switching binary signal. Because successive values involve only shifts and XORs, it should trundle along at a pretty good clip and, indeed, it does:

Arduino Galois shift reg bit timing

Arduino Galois shift reg bit timing

I used the Galois optimization, rather than a traditional LFSR, because I only need one random bit and don’t care about the actual sequence of values. In round numbers, it spits out bits an order of magnitude faster at 6 μs/bit = 160 kHz.

For lack of anything smarter, I picked the first set of coefficients from the list of 32 bit maximal-length values at https://users.ece.cmu.edu/~koopman/lfsr/index.html:
0x80000057.

The spectrum looks pretty good, particularly if you’re only interested in the audio range way over on the left side:

Arduino Galois bit spectrum

Arduino Galois bit spectrum

It’s down 3 dB at 76 kHz, about half the 160 kHz bit flipping pace.

If you were fussy, you’d turn off the 1 ms timer interrupt to remove a slight jitter in the output.

It’s built with an old Arduino Pro Mini wired up to a counterfeit FTDI USB converter. Maybe this is the best thing I can do with it: put it in a box with a few audio filters for various noise colors and be done with it.

It occurs to me I could fire it into the 60 kHz preamp’s snout to measure the response over a fairly broad range while I’m waiting for better RF reception across the continent.

The Arduino source code as a GitHub Gist:

,

Leave a comment

RAMPS 1.4: Simulated Heater

Epoxying a 100 kΩ thermistor to a 909 Ω resistor (because I have a bunch of them) serves as a simple heater tester:

Simulated heater - thermistor bonding

Simulated heater – thermistor bonding

It dissipates 450 mW, raising the temperature enough to let the PWM control kick in, but not enough to get scary hot.

Some heatstink tubing prevents reduces the likelihood of horrible accidents involving the 20 V motor / heater power supply:

RAMPS 1.4 - Simulated heaters

RAMPS 1.4 – Simulated heaters

Keeping it under 50 °C seems like a Good Idea:

RAMPS 1.4 - Simulated heater - LCD

RAMPS 1.4 – Simulated heater – LCD

Not that I have a need to heat anything, but the MOSFETs work!

 

 

, ,

4 Comments

Two-Wheel Plotter

While contemplating all the hocus-pocus and precision alignment involved in the DIY plotter project, it occurred to me you could conjure a plotter from a pair of steppers, two disks, a lifting mechanism, and not much else. The general idea resembles an Rθ plotter, with the paper glued to a turntable for the “theta” motion, but with the “radius” motion produced by pen(s) on another turntable:

Rotary Plotter - geometry 4

Rotary Plotter – geometry 4

The big circle is the turntable with radius R1, which might be a touch over 4.5 inches to fit an 8.5 inch octagon cut from ordinary Letter paper. The arc with radius R2 over on the right shows the pen path from the turntable’s center to its perimeter, centered at (R1/2,-R1) for convenience.

The grid paper represents the overall Cartesian grid containing the XY points you’d like to plot, like, for example, point Pxy in the upper right corner. The object of the game is to figure out how to rotate the turntable and pen holder to put Pxy directly under the pen at Ixy over near the right side, after which one might make a dot by lowering the pen. Drawing a continuous figure requires making very small motions between closely spaced points, using something like Bresenham’s line algorithm to generate the incremental coordinates or, for parametric curves like the SuperFormula, choosing a small parameter step size.

After flailing around for a while, I realized this requires finding the intersections of two circles after some coordinate transformations.

The offset between the two centers is (ΔX,ΔY) and the distance is R2 = sqrt(ΔX² + ΔY²).  The angle between the +X axis and the pen wheel is α = atan2(ΔY,ΔX), which will be negative for this layout.

Start by transforming Pxy to polar coordinates PRθ, which produces the circle containing both Pxy and Ixy. A pen positioned at radius R from the center of the turntable will trace that circle and Ixy sits at the intersection of that circle with the pen rotating around its wheel.

The small rectangle with sides a and b has R as its diagonal, which means a² + b² = R² and the pointy angle γ = atan a/b.

The large triangle below that has base (R2 – a), height b, and hypotenuse R2, so (R2 – a)² + b² = R2².

Some plug-and-chug action produces a quadratic equation that you can solve for a as shown, solve for b using the first equation, find γ from atan a/b, then subtract γ from θ to get β, the angle spearing point Ixy. You can convert Rβ back to the original grid coordinates with the usual x = R cos β and y = R sin β.

Rotate the turntable by (θ – β) to put Pxy on the arc of the pen at Ixy.

The angle δ lies between the center-to-center line and Ixy. Knowing all the sides of that triangle, find δ = arccos (R2 – a) / R2 and turn the pen wheel by δ to put the pen at Ixy.

Lower the pen to make a dot.

Done!

Some marginal thinking …

I’m sure there’s a fancy way to do this with, surely, matrices or quaternions, but I can handle trig.

You could drive the steppers with a Marlin / RAMPS controller mapping between angles and linear G-Code coordinates, perhaps by choosing suitable steps-per-unit values to make the degrees (or some convenient decimal multiple / fraction thereof) correspond directly to linear distances.

You could generate points from an equation in, say, Python on a Raspberry Pi, apply all the transformations, convert the angles to G-Code, and fire them at a Marlin controller over USB.

Applying 16:1 microstepping to a stock 200 step/rev motor gives 0.113°/step, so at a 5 inch radius each step covers 0.01 inch. However, not all microsteps are moved equally and I expect the absolute per-step accuracy would be somewhere between OK and marginal. Most likely, given the application, even marginal accuracy wouldn’t matter in the least.

The pen wheel uses only 60-ish degrees of the motor’s rotation, but you could mount four-ish pens around a complete wheel, apply suitable pen lift-and-lower action and get multicolor plots.

You could gear down the steppers to get more steps per turntable revolution and way more steps per pen arc, perhaps using cheap & readily available RepRap printer GT2 pulleys / belts / shafts / bearings from the usual eBay sellers. A 16 tooth motor pulley driving a 60 tooth turntable pulley would improve the resolution by a factor of 3.75: more microsteps per commanded motion should make the actual motion come out better.

Tucking the paper atop the turntable and under the pen wheel could be a challenge. Perhaps mounting the whole pen assembly on a tilting plate would help?

Make all the workings visible FTW!

Some doodles leading up to the top diagram, complete with Bad Ideas and goofs …

Centering the pen wheel at a corner makes R2 = R1 * sqrt(2), which seems attractive, but seems overly large in retrospect:

Rotary Plotter - geometry 1

Rotary Plotter – geometry 1

Centering the pen wheel at (-R1,R1/2) with a radius of R1 obviously doesn’t work out, because the arc doesn’t reach the turntable pivot, so you can’t draw anything close to the center. At least I got to work out some step sizes.

A first attempt at coordinate transformation went nowhere:

Rotary Plotter - geometry 2

Rotary Plotter – geometry 2

After perusing the geometric / triangle solution, this came closer:

Rotary Plotter - geometry 3

Rotary Plotter – geometry 3

, ,

7 Comments

Vacuum Tube LEDs: PAR30 Halogen Spotlight

Breaking the fake heatsink off the big floodlight, drilling out the guts, and rebuilding it with a WS2812 RGBW LED left the PET braid too short for a nice curve from socket to bulb, so I swapped in a smaller and equally defunct PAR30 halogen spotlight:

PAR30 Halogen - red phase

PAR30 Halogen – red phase

And in green:

PAR30 Halogen - green phase

PAR30 Halogen – green phase

The white glass frit ring around the perimeter lights up nicely in the dark.

The knockoff Arduino Nano now runs the RGBW program, with Morse transmissions disabled and the white LED dialed back to MaxPWM = 32.

, ,

Leave a comment

RAMPS 1.4: LCD Board QC FAIL

When I plugged the LCD into the RAMPS board, the USB current jumped from 70-ish mA to about 700 mA, which seemed odd. Eventually the problem followed the “Smart Adapter Board”, which has no active components and simply rearranges two pin headers into two ribbon cables, so what could go wrong?

This stared me in the face for a while until I recognized it:

RAMPS 1.4 - Smart Adapter - solder mask failure

RAMPS 1.4 – Smart Adapter – solder mask failure

Yup, that trace is supposed to run around the corner without merging into the ground plane and, of course, it carries the +5 V power supply to the LCD board. Just another production goof and, I’m certain, the boards don’t get any testing because they’re so simple.

Two cuts, a bit of scraping, a snippet of Wire-Wrap wire, and it’s all good:

RAMPS 1.4 - LCD panel

RAMPS 1.4 – LCD panel

The white-on-blue display is reasonably legible in person, even if it’s nearly invisible here. Might have something to do with polarization vs. the Pixel’s camera.

Everything else on the LCD board works fine. I set the beep to 50 ms and the tone to 700 Hz, which suit my deflicted ears better than the defaults.

Phew!

,

1 Comment

RAMPS 1.4: Configuration for Generic Motor Control

Configuring the knockoff RAMPS 1.4 board went reasonably smoothly:

RAMPS 1.4 - First Light

RAMPS 1.4 – First Light

The DC (n.b., not an AC) solid state relay in the foreground switches the 20 V laptop supply brick to the RAMPS shield atop the knockoff Arduino Mega 2560, controlled by the PS_ON pin (black wire), with +5 V from a pin in the AUX header (yellow wire). The SSR includes a ballast resistor limiting the current to 12 mA, with an inconspicuous red LED behind the black dot showing when the output is turned on.

Because it’s a DC SSR, polarity matters: the supply goes to the + terminal, the RAMPS power inputs to the – terminal.

I haven’t applied much of a load to to the SSR, but it works as expected. Define POWER_SUPPLY 1 and PS_DEFAULT_OFF so the boards starts up with the SSR turned off, then use M80 / M81 to turn it on / off as needed.

Remove D1 on the RAMPS board to isolate the Mega power from the +20 V supply. Stuffed as shown, the Mega draws 70 mA from the USB port, although an external 8 V (-ish) supply is always a good idea.

The stepper is a random NEMA 17 from the heap in a mount intended for a DIY plotter. I adjusted the tiny trimpots on all the boards for 400 mA peak = 250 mA RMS into the windings, after finding 250 mApk didn’t produce nearly enough mojo, even for a demonstration:

X Axis Stepper Drive

X Axis Stepper Drive

Just to get it running, I used DEFAULT_AXIS_STEPS_PER_UNIT = 100 step/mm, MAX_FEEDRATE 100 mm/s, and (for lack of anything better)
DEFAULT_*_ACCELERATION 1000. Those all depend the torque produced by the motor current, which is still way too low.

The endstops require X_???_ENDSTOP_INVERTING true.

I set the ?_BED_SIZE parameters to a generous 2000, with ?_MIN_POS equal to -SIZE/2 to put the origin in the middle where I prefer it, with a similar setting for the Z axis. Obviously, those numbers don’t correspond to any physical reality.

Three little 100 kΩ thermistors sprout from their header and produce reasonable temperatures, although (being cheap eBay parts) they may not match the Type 4 curve. I don’t have any heaters connected. All the over / under temperature lockouts are disabled, because I don’t care right now.

The G-Code parser wants uppercase command letters, which means I get to press the Caps Lock key for the first time in nearly forever!

The header along the right edge of the board connects to the LCD control board, which is another story.

The diffs for the Configuration.h and Configuration_adv.h files as a GitHub Gist:

,

16 Comments