The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Category: Photography & Images

Taking & making images.

  • Gutter Icicles

    OK, I’m a sucker for sunlit solid water:

    They’re hanging from the gutters over the patio. The house has six-foot soffits back there and nearly three feet elsewhere, plus the roofers installed rubber sheets along the walls, so we’re not worried about leaks…

  • End and Beginning of the Computer Glasses

    Having repaired these once before, I wasn’t too surprised when this happened:

    Eyeglasses - broken nose bridge wire
    Eyeglasses – broken nose bridge wire

    Evidently the “titanium” has fatigued, because the repair lasted barely nine months.

    Rather than try to fix them again, I sent my new prescriptions halfway around the planet and, a bit under two weeks later, had three glasses: normal, computer, and sun. This time, I went with 38 mm tall lenses, a heavier nose bridge, and traditional aviator sunglasses.

    For the record, the regular prescription was:

    Normal prescription - 2014-12

    Tweaking that by +0.75 diopter on the sphere puts my far point focus on the monitors across the desk and backing -0.75 diopter from the adder keeps the same near-point reading correction:

    Computer prescription - 2014-12
    Computer prescription – 2014-12

    They’re all no-line progressive bifocals made from 1.57 high-index plastic with anti-reflection coating, for a grand total of $135 delivered.

    That being only slightly more than the estimated cost of fixing one broken Silhouette frame temple, Mary will try living in the future, too.

  • Monthly Image: Ice at Red Oaks Mill Dam

    After the January snowstorm, everything above the water downstream of the Red Oaks Mill dam featured a snow cap rimmed with ice:

    Red Oaks Mill Dam - downstream ice
    Red Oaks Mill Dam – downstream ice

    The jet emerging from a deep notch in the dam breast on the near side of the ice sheet chewed through the concrete-and-rubble structure:

    Red Oaks Mill Dam - central flume
    Red Oaks Mill Dam – central flume

    Upstream, graceful curves in the ice highlight the flow streamlines:

    Red Oaks Mill Dam - upstream ice
    Red Oaks Mill Dam – upstream ice

    Yes, that was on the same walk when we found the severed head

  • Snow Mounds

    Two snowstorms in a week converted our patio tables into gentle sculptures.

    If you could flip the round table upside down, the mound might match the snow shadow underneath:

    Snow mound - round table
    Snow mound – round table

    Snow falling through the 2 inch hole in the middle of the square table produces a large cone below:

    Snow mound - square table
    Snow mound – square table

    Leaving a much larger caldera in the top:

    Snow mound - square table - top view
    Snow mound – square table – top view

    Yes, I’m easily amused…

  • If You See Something, Say Something

    Nah, that can’t possibly be a …

    Mannequin head - 1
    Mannequin head – 1

    Tell me it’s not a really bad wig …

    Mannequin head - 2
    Mannequin head – 2

    Gently now …

    Mannequin head - 3
    Mannequin head – 3

    Whew!

    Found on Old Mill Road, just downstream of the Red Oaks Mill dam; the Mighty Wappingers Creek flows on the left.

    That’s all I have to say…

  • Monthly Image: Spherometer Measurements

    Our Larval Engineer volunteered to convert the lens from a defunct magnifying desk lamp into a hand-held magnifier; there’s more to that story than is relevant here. I bulldozed her into making a solid model of the lens before starting on the hand-holdable design, thus providing a Thing to contemplate while working out the holder details.

    That justified excavating a spherometer from the heap to determine the radius of curvature for the lens:

    Student Sphereometer on lens
    Student Sphereometer on lens

    You must know either the average radius / diameter of the pins or the average pin-to-pin distance. We used a quick-and-dirty measurement for the radius, but after things settled down, I used a slightly more rigorous approach. Spotting the pins on carbon paper (!) produced these numbers:

    Sphereometer Pin Radii
    Sphereometer Pin Radii

    The vertical scale has hard-metric divisions: 1 mm on the post and 0.01 on the dial. You’d therefore expect the pins to be a hard metric distance apart, but the 25.28 mm average radius suggests a crappy hard-inch layout. It was, of course, a long-ago surplus find without provenance.

    The 43.91 mm average pin-to-pin distance works out to a 50.7 mm bolt circle diameter = 25.35 mm radius, which is kinda-sorta close to the 25.28 mm average radius. I suppose averaging the averages would slightly improve things, but …

    The vertical distance for the lens in question was 0.90 mm, at least for our purposes. That’s the sagitta, which sounds cool enough to justify this whole exercise right there. It’s 100 mm in diameter and the ground edge is 2.8 mm thick, although the latter is subject to some debate.

    Using the BCD, the chord equation applies:

    • Height m = 0.90 mm
    • Base c = 50.7 mm
    • Lens radius r = (m2 + c2/4) / 2m = 357.46 mm

    Using the pin-to-pin distance, the spherometer equation applies:

    • Pin-to-pin a = 43.91 mm
    • Sagitta h = 0.90 mm
    • Lens radius R = (h/2) + (a2 / 6h) = 357.50 mm

    Close enough, methinks.

    Solving the chord equation for the total height of each convex side above the edge:

    • Base c = 100 mm
    • Lens radius r = 357.5 mm
    • Height m = r – sqrt(r2 -c2/4) = 3.5 mm

    So the whole lens should be 2 · 3.5 + 2.8 = 9.8 mm thick. It’s actually 10.15 mm, which says they were probably trying for 10.0 mm and I’m measuring the edge thickness wrong.

    She submitted to all this nonsense with good grace and cooked up an OpenSCAD model that prints the “lens” in two halves:

    Printed Lens - halves on platform
    Printed Lens – halves on platform

    Alas, those thin flanges have too little area on the platform to resist the contraction of the plastic above, so they didn’t fit together very well at all:

    Printed Lens - base distortion
    Printed Lens – base distortion

    We figured a large brim would solve that problem, but then it was time for her to return to the hot, fast core of college life…

  • Bad Batteries Are Bad: Cold Weather Edition

    So we took an out-and-back walk across the Walkway Over the Hudson, after which I spotted this amusing sight:

    Parking Meter - empty battery box
    Parking Meter – empty battery box

    The horrible color balance comes from using a preset tuned for the M2’s new LED lights, rather than letting the camera figure things out on its own, then fighting it down after cropping.

    Anyhow, we did a bit over two miles of walking with outdoor temperature just over freezing. The camera lives in the left cargo pocket of my pants and the spare NB-5L battery in the camera case faces outward. Neither battery would power the camera at ambient temperature; evidently, being that cold reduced their output voltage below the level that the camera would accept.

    With a cold battery, the camera grunted, displayed a message about replacing the battery, and promptly shut itself off. Warming one of the batteries boosted its terminal voltage enough to take the picture, which accounts for not getting the proper color balance: I was fully occupied just getting the camera working.

    Back home and warmed up, the camera said both batteries were fully charged. They came from the BNF27 lot that produced low terminal voltages, so I’ll reserve them for warmer weather and use the BNI13 lot during the next few months.