The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Tag: Improvements

Making the world a better place, one piece at a time

  • Garden Knife Sheath

    This replaces the transparent acrylic version that’s sure to resurface in the garden:

    Garden Knife Sheath - solid model
    Garden Knife Sheath – solid model

    The ends have nice chamfered entrances made from octagons:

    Garden Knife Sheath - entrances - solid model
    Garden Knife Sheath – entrances – solid model

    The thing went away so fast I didn’t get a chance to photograph it, but magenta PETG filament should make it much harder to mislay, out there among the greenery…

    The OpenSCAD source code:

    // Garden Knife Scabbard
    // Ed Nisley KE4ZNU - August 2015
    
    //- Extrusion parameters - must match reality!
    
    ThreadThick = 0.25;
    ThreadWidth = 0.40;
    
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    
    Protrusion = 0.1;
    
    HoleWindage = 0.2;
    
    //------
    // Dimensions
    
    WallThick = IntegerMultiple(3.0,ThreadWidth);
    
    Blade = [115,1.8,16.0];
    
    Clearance = [10.0,2.0,2.0];
    
    Slot = Blade + Clearance;
    
    Sheath = Slot + [0,2*WallThick,2*WallThick];
    
    //- Build it
    
    
    translate([0,0,Sheath[2]/2])
        difference() {
            union() {
                for (i=[-1,1])
                    translate([i*Sheath[0]/2,0,-Sheath[2]/2])
                        rotate(180/32)
                            cylinder(d=Sheath[1],h=Sheath[2],$fn=32);
                cube(Sheath,center=true);
            }
            cube(Slot + [Slot[0],0,0],center=true);
            for (i=[-1,1])
                translate([i*(Sheath[0]/2 + Sheath[1]/2),0,-Slot[2]/2])
                    rotate(180/8)
                        cylinder(d=Sheath[1] - 4*ThreadWidth,h=Slot[2],$fn=8);
        }
    
  • HP 7475A Plotter: Refilled Pen Performance

    During this plot, an Inmac purple pen (in the Pen 5 slot) pretty much ran out of ink:

    HP 7475A - Pen 5 before refill
    HP 7475A – Pen 5 before refill

    It printed the legend perfectly and started the trace solidly enough, proceeding upward from the far right, but after ten circuits around the center it returned dragging a very faint line behind it.

    Ten drops = 0.05 ml of more-or-less reddish purple blended inkjet ink restored its good humor:

    HP 7475A - Pen 5 after refill
    HP 7475A – Pen 5 after refill

    If you get ’em before they fossilize, they’re refillable!

  • Victoreen 710-104 Ionization Chamber: Revised Fittings

    Second time’s the charm:

    Victoreen 710-104 Ionization Chamber Fittings - Show V2
    Victoreen 710-104 Ionization Chamber Fittings – Show V2

    There’s not much difference from the first iteration, apart from a few code cleanups. The engraved text is kinda-sorta gratuitous, but I figured having the circuit board dimensions on all the key parts would avoid heartache & confusion; the code now autosizes the board to the holder OD. Skeletonizing the board template didn’t save nearly as much printing time as I expected, though.

    Now I can build a second electrometer amp without dismantling the two-transistor version.

    The OpenSCAD source code:

    // Victoreen 710-104 Ionization Chamber Fittings
    // Ed Nisley KE4ZNU August 2015
    
    Layout = "Show";
    					// Show - assembled parts
    					// Build - print can parts + shield
    					// BuildShield - print just the shield
    					// BuildHolder - print just the can cap & PCB base
    					// CanCap - PCB insulator for 6-32 mounting studs
    					// CanBase - surrounding foot for ionization chamber
    					// CanRim - generic surround for either end of chamber
    					// PCB - template for cutting PCB sheet
    					// PCBBase - holder for PCB atop CanCap
    					// Shield - electrostatic shield shell
    
    //- Extrusion parameters must match reality!
    //  Print with 2 shells and 3 solid layers
    
    ThreadThick = 0.25;
    ThreadWidth = 0.40;
    
    HoleWindage = 0.2;
    
    Protrusion = 0.1;			// make holes end cleanly
    
    AlignPinOD = 1.75;			// assembly alignment pins = filament dia
    
    inch = 25.4;
    
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    
    //- Screw sizes
    
    Tap4_40 = 0.089 * inch;
    Clear4_40 = 0.110 * inch;
    Head4_40 = 0.211 * inch;
    Head4_40Thick = 0.065 * inch;
    Nut4_40Dia = 0.228 * inch;
    Nut4_40Thick = 0.086 * inch;
    Washer4_40OD = 0.270 * inch;
    Washer4_40ID = 0.123 * inch;
    
    
    //----------------------
    // Dimensions
    
    OD = 0;											// name the subscripts
    LENGTH = 1;
    
    Chamber = [91.0,38];							// Victoreen ionization chamber dimensions
    
    Stud = [										// stud welded to ionization chamber lid
    	[6.5,IntegerMultiple(0.8,ThreadThick)],		// flat head -- generous clearance
    	[4.0,9.5],									// 6-32 screw -- ditto
    ];
    NumStuds = 3;									// this really isn't much of a variable...
    StudAngle = 360/NumStuds;
    StudSides = 6;									// for hole around stud
    
    BCD = 2.75 * inch;								// mounting stud bolt circle diameter
    
    PlateThick = 2.0;								// minimum layer atop and below chamber ends
    RimHeight = 4.0;								// extending along chamber perimeter
    WallHeight = RimHeight + PlateThick;
    WallThick = 3.0;								// thick enough to be sturdy & printable
    CapSides = 8*6;									// must be multiple of 4 & 3 to make symmetries work out right
    
    RimOD = Chamber[OD] + 2*WallThick;
    
    echo(str("Rim OD: ",RimOD));
    
    //PCBFlatsOD = 82.0;							// desired hex dia flat-to-flat
    PCBFlatsOD = floor(RimOD*cos(30)) - 2.0;		//  .. maximum possible
    //PCBFlatsOD = floor(Chamber[OD]*cos(30)) - 2.0;	//  .. chamber fitting
    PCBClearance = ThreadWidth;						// clearance beyond each flat for mounting
    
    PCBThick = 1.1;
    PCBActual = [PCBFlatsOD/cos(30),PCBThick];		// OD = tip-to-tip
    PCBCutter = [(PCBFlatsOD + 2*PCBClearance)/cos(30),PCBThick - ThreadThick];		// OD = tip-to-tip dia + clearance
    
    PCBSize = str(PCBFlatsOD, " mm");
    echo(str("Actual PCB across flats: ",PCBFlatsOD));
    echo(str(" ... tip-to-tip dia: ",PCBActual[OD]));
    echo(str(" ... thickness: ",PCBActual[LENGTH]));
    
    HolderHeight = 13.0 + PCBCutter[LENGTH];		// thick enough for PCB to clear studs + batteries
    HolderShelf = 2.0;								// shelf under PCB edge
    HolderTrim = 5.0;								// remove end of holder to clear PCB edge solder blobs
    echo(str("Holder trim distance: ",HolderTrim));
    HolderTrimAngle = StudAngle/2 - 2*atan(HolderTrim*cos(StudAngle/2)/(PCBActual[OD]/2));	// atan is close for small angles
    echo(str(" ... angle: ",HolderTrimAngle));
    
    PinAngle = 15;									// alignment pin angle on either side of holder screw
    
    echo(str("PCB holder across flats: ",PCBCutter[OD]*cos(30)));
    echo(str(" ... height: ",HolderHeight));
    
    ShieldInset = 0.5;								// shield inset from actual PCB flat
    ShieldWall = 2.0;								// wall thickness
    ShieldLid = 6*ThreadThick;						// top thickness (avoid one infill layer)
    Shield = [(PCBFlatsOD - 2*ShieldInset)/ cos(30),40.0];		// electrostatic shield shell dimensions
    
    TextSize = 4;
    TextCharSpace = 1.05;
    TextLineSpace = TextSize + 2;
    TextDepth = 1*ThreadThick;
    
    //----------------------
    // Useful routines
    
    module PolyCyl(Dia,Height,ForceSides=0) {			// based on nophead's polyholes
    
      Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    
      FixDia = Dia / cos(180/Sides);
    
      cylinder(r=(FixDia + HoleWindage)/2,
    			h=Height,
    		$fn=Sides);
    }
    
    //- Locating pin hole with glue recess
    //  Default length is two pin diameters on each side of the split
    
    module LocatingPin(Dia=AlignPinOD,Len=0.0) {
    	
    	PinLen = (Len != 0.0) ? Len : (4*Dia);
    	
    	translate([0,0,-ThreadThick])
    		PolyCyl((Dia + 2*ThreadWidth),2*ThreadThick,4);
    
    	translate([0,0,-2*ThreadThick])
    		PolyCyl((Dia + 1*ThreadWidth),4*ThreadThick,4);
    		
    	translate([0,0,-Len/2])
    		PolyCyl(Dia,Len,4);
    
    }
    
    module ShowPegGrid(Space = 10.0,Size = 1.0) {
    
      RangeX = floor(100 / Space);
      RangeY = floor(125 / Space);
      
    	for (x=[-RangeX:RangeX])
    		for (y=[-RangeY:RangeY])
    		translate([x*Space,y*Space,Size/2])
    			%cube(Size,center=true);
    }
    
    //-----
    
    module CanRim(BaseThick) {
    	
    	difference() {
    		cylinder(d=Chamber[OD] + 2*WallThick,h=(WallHeight + BaseThick),$fn=CapSides);
    		translate([0,0,BaseThick])
    			PolyCyl(Chamber[OD],Chamber[LENGTH],CapSides);
    	}
    	
    }
    
    module CanCap() {
    	
    	difference() {
    		CanRim(PlateThick + Stud[0][LENGTH]);
    		
    		translate([0,0,-Protrusion])											// central cutout
    			rotate(180/6)
    				cylinder(d=BCD,h=Chamber[LENGTH],$fn=6);						//  ... reasonable size
    			
    		for (i=[0:(NumStuds - 1)])												// stud clearance holes
    			rotate(i*StudAngle)
    				translate([BCD/2,0,0])
    					rotate(180/StudSides) {
    						translate([0,0,PlateThick])
    							PolyCyl(Stud[0][OD],Chamber[LENGTH],StudSides);
    						translate([0,0,-Protrusion])
    							PolyCyl(Stud[1][OD],Chamber[LENGTH],StudSides);
    					}
    					
    		for (i=[0:(NumStuds - 1)], j=[-1,1])									// PCB holder alignment pins
    			rotate(i*StudAngle + j*PinAngle + 60)
    				translate([Chamber[OD]/2,0,0])
    					rotate(180/4 - j*PinAngle)
    						LocatingPin(Len=2*(PlateThick + Stud[0][LENGTH]) - 4*ThreadThick);
    						
    		translate([-(BCD/2),0,-Protrusion])
    			rotate(90) mirror() 
    				linear_extrude(height=(ThreadThick + Protrusion))
    				text(PCBSize,size=6,font="Liberation Mono:style=bold",halign="center",valign="center");
    	}
    
    }
    
    module CanBase() {
    	
    	difference() {
    		CanRim(PlateThick);
    		translate([0,0,-Protrusion])
    			PolyCyl(Chamber[OD] - 2*RimHeight,Chamber[LENGTH],CapSides);
    	}
    }
    
    module PCBTemplate() {
    	
    	CutLen = 10*PCBActual[LENGTH];
    	
    	difference() {
    		cylinder(d=PCBActual[OD],h=PCBActual[LENGTH],$fn=6);		// actual PCB size
    		translate([0,0,-Protrusion])
    			cylinder(d=8,h=CutLen,$fn=12);
    		if (true)
    			for (i=[0:5])											// empirical cutouts
    				rotate(i*60 + 30)
    					translate([PCBFlatsOD/3,0,-Protrusion])
    						rotate(60)
    							cylinder(d=0.43*PCBActual[OD],h=CutLen,$fn=3);
    							
    		translate([PCBActual[OD]/4,0,(PCBActual[LENGTH] - ThreadThick)])
    			linear_extrude(height=(ThreadThick + Protrusion),convexity=1)
    			text(PCBSize,size=4,font="Liberation Mono:style=bold",halign="center",valign="center");
    							
    	}
    }
    
    module PCBBase() {
    
    	intersection() {
    		difference() {
    			cylinder(d=Chamber[OD] + 2*WallThick,h=HolderHeight,$fn=CapSides);		// outer rim
    			
    			rotate(30) {
    				translate([0,0,-Protrusion])										// central hex
    					cylinder(d=(PCBActual[OD] - HolderShelf/cos(30) - HolderShelf/cos(30)),h=2*HolderHeight,$fn=6);
    					
    				translate([0,0,HolderHeight - PCBCutter[LENGTH]])					// hex PCB recess
    					cylinder(d=PCBCutter[OD],h=HolderHeight,$fn=6);
    					
    				for (i=[0:NumStuds - 1])											// PCB retaining screws
    					rotate(i*StudAngle + 180/(2*NumStuds))
    						translate([(PCBCutter[OD]*cos(30)/2 + Clear4_40/2 + ThreadWidth),0,-Protrusion])
    							rotate(180/6)
    								PolyCyl(Tap4_40,2*HolderHeight,6);
    								
    				for (i=[0:(NumStuds - 1)], j=[-1,1])								// PCB holder alignment pins
    					rotate(i*StudAngle + j*PinAngle + 180/(2*NumStuds))
    						translate([Chamber[OD]/2,0,0])
    							rotate(180/4 - j*PinAngle)
    								LocatingPin(Len=2*(HolderHeight - 4*ThreadThick));
    			}
    			
    			if (false)
    			for (i=[0:NumStuds - 1])
    				rotate(i*StudAngle - StudAngle/2)							// segment isolation - hex sides
    					translate([0,0,-Protrusion]) {
    						linear_extrude(height=2*HolderHeight)
    							polygon([[0,0],[Chamber[OD],0],[Chamber[OD]*cos(180/NumStuds),Chamber[OD]*sin(180/NumStuds)]]);
    					}
    					
    			translate([-(PCBFlatsOD/2 + PCBClearance - HolderShelf),0,HolderHeight/2])
    				rotate([0,90,0]) rotate(90)
    					linear_extrude(height=(ThreadWidth + Protrusion))
    					text(PCBSize,size=6,font="Liberation Mono:style=bold",halign="center",valign="center");
    					
    		}
    		
    		for (i=[0:NumStuds - 1])
    			rotate(i*StudAngle + StudAngle/2 - HolderTrimAngle/2)								// trim holder ends
    				translate([0,0,-Protrusion]) {
    					linear_extrude(height=2*HolderHeight)
    						polygon([[0,0],[Chamber[OD],0],[Chamber[OD]*cos(HolderTrimAngle),Chamber[OD]*sin(HolderTrimAngle)]]);
    				}
    			
    	}
    }
    
    //-- Electrostatic shield
    //		the cutouts are completely ad-hoc
    
    module ShieldShell() {
    	
    CutHeight = 7.0;
    	
    	difference() {
    		cylinder(d=Shield[OD],h=Shield[LENGTH],$fn=6);							// exterior shape
    		
    		translate([0,0,-ShieldLid])												// interior
    			cylinder(d=(Shield[OD] - 2*ShieldWall/cos(30)),h=Shield[LENGTH],$fn=6);
    
    		translate([0,0,Shield[LENGTH] - TextDepth])
    		rotate(180) {
    			translate([0,0.3*Shield[OD] - 0*TextLineSpace,0])
    				linear_extrude(height=(TextDepth + Protrusion))
    					text("Gamma",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
    			translate([0,0.3*Shield[OD] - 1*TextLineSpace,0])
    				linear_extrude(height=(TextDepth + Protrusion))
    					text("Ionization",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
    			translate([0,0.3*Shield[OD] - 2*TextLineSpace,0])
    				linear_extrude(height=(TextDepth + Protrusion))
    					text("Amplifier",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
    			translate([0,-0.3*Shield[OD] + 1*TextLineSpace,0])
    				linear_extrude(height=(TextDepth + Protrusion))
    					text("KE4ZNU",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
    			translate([0,-0.3*Shield[OD] + 0*TextLineSpace,0])
    				linear_extrude(height=(TextDepth + Protrusion))
    					text("2015-08",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
    		}
    			
    		translate([Shield[OD]/4 - 20/2,Shield[OD]/2,(CutHeight - Protrusion)/2])	// switch
    			rotate(90)
    				cube([Shield[OD],20,CutHeight + Protrusion],center=true);
    
    		if (false)
    		translate([-Shield[OD]/4 + 5/2,Shield[OD]/2,(CutHeight - Protrusion)/2])	// front
    			rotate(90)
    				cube([Shield[OD],5,CutHeight + Protrusion],center=true);
    
    		translate([-Shield[OD]/2,0,(CutHeight - Protrusion)/2])						// right side
    				cube([Shield[OD],7,CutHeight + Protrusion],center=true);
    
    		translate([0,(Shield[OD]*cos(30)/2 - ThreadWidth),0.75*Shield[LENGTH]])
    			rotate([90,0,180]) rotate(00)
    				linear_extrude(height=(ThreadWidth + Protrusion))
    				text(PCBSize,size=5,font="Liberation Mono:style=bold",halign="center",valign="center");
    	}
    	
    }
    
    //----------------------
    // Build it
    
    ShowPegGrid();
    
    if (Layout == "CanRim") {
    	CanRim();
    }
    
    if (Layout == "CanCap") {
    	CanCap();
    }
    
    if (Layout == "CanBase") {
    	CanBase();
    }
    
    if (Layout == "PCBBase") {
    	PCBBase();
    }
    
    if (Layout == "PCB") {
    	PCBTemplate();
    }
    
    if (Layout == "Shield") {
    	ShieldShell();
    }
    
    if (Layout == "Show") {
    	CanBase();
    	color("Orange",0.5)
    		translate([0,0,PlateThick + Protrusion])
    			cylinder(d=Chamber[OD],h=Chamber[LENGTH],$fn=CapSides);
    	translate([0,0,(2*PlateThick + Chamber[LENGTH] + 2*Protrusion)])
    		rotate([180,0,0])
    			CanCap();
    	translate([0,0,(2*PlateThick + Chamber[LENGTH] + 5.0)])
    		PCBBase();
    	color("Green",0.5)
    		translate([0,0,(2*PlateThick + Chamber[LENGTH] + 7.0 + HolderHeight)])
    			rotate(30)
    				PCBTemplate();
    	translate([0,0,(2*PlateThick + Chamber[LENGTH] + 15.0 + HolderHeight)])
    		rotate(-30)
    			ShieldShell();}
    
    if (Layout == "Build") {
    	
    	translate([-0.50*Chamber[OD],-0.60*Chamber[OD],0])
    		CanCap();
    		
    	if (false)
    		translate([0.55*Chamber[OD],-0.60*Chamber[OD],0])
    			rotate(30)
    				translate([0,0,Shield[LENGTH]])
    					rotate([0,180,0])
    						ShieldShell();
    	if (true)
    		translate([0.55*Chamber[OD],-0.60*Chamber[OD],0])
    			rotate(30)
    				PCBTemplate();
    
    	if (true)
    		translate([-0.25*Chamber[OD],0.60*Chamber[OD],0])
    			CanBase();
    		translate([0.25*Chamber[OD],0.60*Chamber[OD],0])
    			PCBBase();
    }
    
    if (Layout == "BuildHolder") {
    	translate([-0.25*Chamber[OD],0,0])
    		CanCap();
    	translate([0.25*Chamber[OD],0,0])
    		PCBBase();
    }
    
    if (Layout == "BuildShield") {
    	
    	translate([0,0,Shield[LENGTH]])
    		rotate([0,180,0])
    				ShieldShell();
    		
    
    }
    
  • HP 7475A Plotter: SuperFormula With Paper Size Sensing

    Well, it’s actually not “sensing”, but the demo code now sizes the graph to the paper size reported by the plotter, so you can plot on cheap and readily available A-size paper. The Vulcan Nerve Pinch that switches paper size on the fly is Enter+Size; I leave the DIP switches set for B-size sheets, because they’re more impressive and take longer to plot.

    A collection of A-size plots:

     

    Superformula Plots - A-size paper
    Superformula Plots – A-size paper

    The perspective foreshortening makes the sheets look square and the plots seem circular; they’re not.

    The plots lie in rough time sequence from lower left to upper right, showing that I tweaked the n1 parameter to avoid the sort of tiny middle that gnawed a hole right through the center-bottom sheet. I also removed higher m parameter values, because more than 50-ish points doesn’t work well on smaller sheets.

    I figured out how to use the Python ternary “operator” and tweaked the print formatting, but basically it’s a hack job through & through.

    The Python source code, including the hacked Chiplotle routines that produce the SuperFormula:

    from chiplotle import *
    from math import *
    from datetime import *
    import random
    
    def superformula_polar(a, b, m, n1, n2, n3, phi):
       ''' Computes the position of the point on a
       superformula curve.
       Superformula has first been proposed by Johan Gielis
       and is a generalization of superellipse.
       see: http://en.wikipedia.org/wiki/Superformula
       Tweaked to return polar coordinates
       '''
    
       t1 = cos(m * phi / 4.0) / a
       t1 = abs(t1)
       t1 = pow(t1, n2)
    
       t2 = sin(m * phi / 4.0) / b
       t2 = abs(t2)
       t2 = pow(t2, n3)
    
       t3 = -1 / float(n1)
       r = pow(t1 + t2, t3)
       if abs(r) == 0:
          return (0,0)
       else:
     #     return (r * cos(phi), r * sin(phi))
         return (r,phi)
    
    
    def supershape(width, height, m, n1, n2, n3, 
       point_count=10*1000, percentage=1.0, a=1.0, b=1.0, travel=None):
       '''Supershape, generated using the superformula first proposed 
       by Johan Gielis.
    
       - `points_count` is the total number of points to compute.
       - `travel` is the length of the outline drawn in radians. 
          3.1416 * 2 is a complete cycle.
       '''
       travel = travel or (10*2*pi)
    
       ## compute points...
       phis = [i * travel / point_count 
          for i in range(1 + int(point_count * percentage))]
       points = [superformula_polar(a, b, m, n1, n2, n3, x) for x in phis]
    
       ## scale and transpose...
       path = [ ]
       for r, a in points:
          x = width * r * cos(a)
          y = height * r * sin(a)
          path.append(Coordinate(x, y))
    
       return Path(path)
    
    
    ## RUN DEMO CODE
    
    if __name__ == '__main__':
        
       plt=instantiate_plotters()[0]
    #   plt.write('IN;')
       
       if plt.margins.soft.width < 11000:               # A=10365 B=16640
           maxplotx = (plt.margins.soft.width / 2) - 100
           maxploty = (plt.margins.soft.height / 2) - 150
           legendx = maxplotx - 2600
           legendy = -(maxploty - 650)
           tscale = 0.45
           numpens = 4
           m_list = [n/10.0 for n in [11, 13, 17, 19, 23]];   # prime/10 = number of spikes
           n1_list = [n/100.0 for n in range(55,75,1) + range(80,120,5) + range(120,200,10)]  # ring-ness 0.1 to 2.0, higher is larger
       else:
           maxplotx = plt.margins.soft.width / 2
           maxploty = plt.margins.soft.height / 2
           legendx = maxplotx - 3000
           legendy = -(maxploty - 700)
           tscale = 0.45
           numpens = 6
           m_list = [n/10.0 for n in [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59]];   # prime/10 = number of spikes
           n1_list = [n/100.0 for n in range(15,75,1) + range(80,120,5) + range(120,200,10)]  # ring-ness 0.1 to 2.0, higher is larger
           
       print "Max: ({},{})".format(maxplotx,maxploty)
       
       n2_list = [n/100.0 for n in range(10,50,1) + range(55,100,5) + range(110,200,10)]  # spike-ness 0.1 to 2.0, lower is spiky
    
       plt.write(chr(27) + '.H200:')   # set hardware handshake block size
       plt.set_origin_center()
       plt.write(hpgl.SI(tscale*0.285,tscale*0.375))    # scale based on B size characters
       plt.write(hpgl.VS(10))                           # slow speed for those abrupt spikes
    
       plt.select_pen(1)                                # standard loadout has pen 1 = black
       plt.write(hpgl.PA([(legendx,legendy)]))
       plt.write(hpgl.LB("Started " + str(datetime.today())))
       m = random.choice(m_list)
    
       pen = 1
       for n1, n2 in zip(random.sample(n1_list,numpens),random.sample(n2_list,numpens)):
        n3 = n2
        print "{0} - m: {1:.1f}, n1: {2:.2f}, n2=n3: {3:.2f}".format(pen,m,n1,n2)
        plt.select_pen(pen)
        plt.write(hpgl.PA([(legendx, legendy - 100*pen)]))
        plt.write(hpgl.LB("Pen {0}: m={1:.1f} n1={2:.2f} n2=n3={3:.2f}".format(pen,m,n1,n2)))
        e = supershape(maxplotx, maxploty, m, n1, n2, n3)
        plt.write(e)
        pen = pen + 1 if (pen % numpens) else 1
    
       plt.select_pen(1)
       plt.write(hpgl.PA([(legendx, legendy - 100*(numpens + 1))]))
       plt.write(hpgl.LB("Ended   " + str(datetime.today())))
       plt.select_pen(0)
    
  • Monthly Science: Silica Gel Regeneration

    Last month’s basement safe log showed the humidity (blue trace) relentlessly rising:

    Basement Safe - 2015-08-09
    Basement Safe – 2015-08-09

    Replacing that bag emptied the dried silica gel stash, so I piled six saturated bags in the oven for an overnight regeneration with the oven set to “Warm”, which the IR thermometer reported as 140 °F or so at the bag surface. They sat on cooling racks atop cookie sheets that pretty much filled two oven shelves, with good air flow across their tops and minimal flow between bags and cookie sheet.

    The last time around, I spread the beads directly on the cookie sheets. That seemed like a lot of effort, so I wanted to see how the low-labor alternative worked.

    The two upper-left bags in each group had a pair of bulldog clips holding them closed. The larger bags hold 500 g of “dry” silica gel and the center bag in the lower row was a smaller mesh bag:

    Silica Gel drying - 2015-08-12
    Silica Gel drying – 2015-08-12

    The big bags lost a bit under 130 g during 10 hours, call it 12 g/h, and felt slightly damp on their lower surface.

    I cranked the oven to 230 °F, the lowest actual heat setting, for 210 °F on the bag surface. That got rid of the last 30 g in three hours; another hour brought them to pretty nearly their dry weight of 507 g (gross, with bag / staples / clips).

    Drying being an exponential process, it looks like an overnight bake at “230 °F” will do the trick without melting the bags; the lower temperature doesn’t quite get the job done.

  • Stereo Zoom Microscope: USB Camera Mount

    My stereo zoom microscope neatly filled the entrance pupil of the late, lamented Casio EX-Z850, so that a simple adapter holding it on the eyepiece produced credible images:

    Thinwall open boxes - side detail - 4.98 4.85 measured
    Thinwall open boxes – side detail – 4.98 4.85 measured

    Alas, the shutter failed after that image, leaving me with pictures untaken and naught to take them with.

    The least-awful alternative seems to be gimmicking up an adapter for a small USB camera from the usual eBay source:

    Fashion USB video - case vs camera
    Fashion USB video – case vs camera

    The camera’s 640×480 VGA resolution is marginally Good Enough for the purpose, as I can zoom the microscope to completely fill all those pixels. The optics aren’t up to the standard set by the microscope, but we can cope with that for a while.

    A bit of doodling & OpenSCAD tinkering produced a suitable adapter:

    USB Camera Microscope Mount - solid model
    USB Camera Microscope Mount – solid model

    To which Slic3r applied the usual finishing touches:

    USB Camera Microscope Mount - Slic3r preview
    USB Camera Microscope Mount – Slic3r preview

    A bit of silicone tape holds the sloppy focusing thread in place:

    USB Camera Microscope Mount - cap with camera
    USB Camera Microscope Mount – cap with camera

    Those are 2-56 screws that will hold the cap onto the tube. I drilled out the clearance holes in the cap and tapped the holes in the eyepiece adapter by hand, grabbing the bits with a pin vise.

    Focus the lens at infinity, which in this case meant an old DDJ cover poster on the far wall of the Basement Laboratory, and then it’ll be just as happy with the image coming out of the eyepiece as a human eyeball would be.

    I put a few snippets of black electrical tape atop the PCB locating tabs before screwing the tube in place. The tube ID is 1 mm smaller than the PCB OD, in order to hold the PCB perpendicular to the optical axis and clamp it firmly in place. Come to find out that the optical axis of the lens isn’t perfectly perpendicular to the PCB, but it’s close enough for my simple needs.

    And then it fits just like you’d expect:

    USB Camera Microscope Mount - on eyepiece
    USB Camera Microscope Mount – on eyepiece

    Actually, that’s the second version. The distance from the camera lens (equivalently: the PCB below the optical block, which I used as the datum plane) to the eyepiece is a critical dimension that determines whether the image fills the entrance pupil. I guesstimated the first version by hand-holding the camera and measuring with a caliper, tried it out, then iteratively whacked 2 mm off the tube until the image lit up properly:

    USB Camera Microscope Mount - adjusting tube length
    USB Camera Microscope Mount – adjusting tube length

    Minus 4 mm made it slightly too short, but then I could measure the correct position, tweak that dimension in the code, and get another adapter, just like the first one (plus a few other minor changes), except that it worked:

    USB Camera Microscope Mount - first light
    USB Camera Microscope Mount – first light

    That’s a screen capture from VLC, which plays from /dev/video0 perfectly. Some manual exposure & color balance adjustment may be in order, but it’s pretty good for First Light.

    It turns out that removing the eyepiece and holding the bare sensor over the opening also works fine. The real image from the objective fills much more area than the camera’s tiny sensor: the video image covers about one digit in that picture, but gimmicking up a bare-sensor adapter might be useful.

    The OpenSCAD source code:

    // USB Camera mount for Microscope Eyepiece
    // Ed Nisley KE4ZNU - August 2015
    
    Layout = "Build";                    // Show Build Mount Cap
    
    //-------
    //- Extrusion parameters must match reality!
    //  Print with 2 shells
    
    ThreadThick = 0.25;
    ThreadWidth = 0.40;
    
    HoleWindage = 0.2;
    
    Protrusion = 0.1;           // make holes end cleanly
    
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    
    inch = 25.4;
    
    Tap2_56 = 0.070 * inch;
    Clear2_56 = 0.082 * inch;
    Head2_56 = 0.156 * inch;
    Head2_56Thick = 0.055 * inch;
    Nut2_56Dia = 0.204 * inch;
    Nut2_56Thick = 0.065 * inch;
    Washer2_56OD = 0.200 * inch;
    Washer2_56ID = 0.095 * inch;
    
    BuildGap = 5.0;
    
    //-------
    // Dimensions
    
    //-- Camera
    
    PCBThick = 1.1;
    PCBDia = 24.5;
    PCBClampDia = 23.0;
    
    KeySize = [IntegerMultiple(27.6,ThreadWidth),IntegerMultiple(9.5,ThreadWidth),IntegerMultiple(PCBThick,ThreadThick)];
    KeyOffset = [0.0,1.5,0];
    
    CameraOffset = 22.3;                    // distance from eyepiece to camera PCB
    
    WallThick = 4.0;
    
    EyePieceOD = 30.0;
    EyePieceLen = 30.0;
    
    BodyOD = EyePieceOD + 2*WallThick;
    BodyLen = CameraOffset + EyePieceLen - 5.0;
    
    echo(str("Body length: ",BodyLen));
    
    CapSocket = 10;
    CapLen = CapSocket + WallThick;
    CableOD = 3.7;
    
    echo(str("Cap length: ",CapLen));
    
    
    echo(str("Total length: ",BodyLen + CapLen));
    
    NumScrews = 4;
    ScrewAngle = 45;
    
    NumSides = 6*4;
    
    //-------
    
    module PolyCyl(Dia,Height,ForceSides=0) {           // based on nophead's polyholes
        Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
        FixDia = Dia / cos(180/Sides);
        cylinder(r=(FixDia + HoleWindage)/2,
                 h=Height,
                 $fn=Sides);
    }
    
    
    //-------
    // Components
    
    module LensMount() {
        
        difference() {
            cylinder(d=BodyOD,h=BodyLen,$fn=NumSides);
            translate([0,0,CameraOffset])
                PolyCyl(EyePieceOD,EyePieceLen,NumSides);
            translate([0,0,-Protrusion])
                PolyCyl(PCBClampDia,(BodyLen + 2*Protrusion),NumSides);
            for (i=[0:NumScrews-1])
                rotate(ScrewAngle + i*360/NumScrews)
                    translate([(BodyOD/2 - 1.5*Head2_56/2),0,-Protrusion])
                        rotate(180/4)
                            PolyCyl(Tap2_56,10.0,4);
        }
    }
    
    module CamCap() {
        difference() {
            cylinder(d=BodyOD,h=CapLen,$fn=NumSides);
            translate([0,0,WallThick])
                PolyCyl(PCBDia,CapLen,NumSides);
            translate(KeyOffset + [0,0,(CapLen - KeySize[2]/2 + Protrusion/2)])
                cube((KeySize + [0,0,Protrusion]),center=true);
            if (false)
                translate([0,0,-Protrusion])
                    PolyCyl(CableOD,CapLen,8);
            else
                translate([0,BodyOD/2,(CapLen - CableOD/2 + Protrusion/2)])
                    rotate([90,0,0])
                        cube([CableOD,(CableOD + Protrusion),BodyOD],center=true);
            for (i=[0:NumScrews-1])
                rotate(ScrewAngle + i*360/NumScrews)
                    translate([(BodyOD/2 - 1.5*Head2_56/2),0,-Protrusion])
                        rotate(180/4)
                            PolyCyl(Clear2_56,(CapLen + 2*Protrusion),4);
            
        }
    }
    
    //-------
    // Build it!
    
    if (Layout == "Mount")
        LensMount();
    
    if (Layout == "Cap")
        CamCap();
    
    if (Layout == "Show") {
        CamCap();
        translate([0,0,CapLen + 5])
            LensMount();
    }
    if (Layout == "Build") {
        translate([-(BodyOD/2 + BuildGap),0,0])
            CamCap();
            translate([(BodyOD/2 + BuildGap),0,0])
            LensMount();
    }
    
  • HP 7475A Plotter: SuperFormula Demo Madness!

    A gallery of SuperFormula plots, resized / contrast stretched / ruthlessly compressed (clicky for more dots):

    The gray one at the middle-bottom suffered from that specular reflection; the automagic contrast stretch couldn’t boost the paper with those burned pixels in the way.

    Those sheets all have similar plots on the back, some plots used refilled pens that occasionally bled through the paper, others have obviously bad / dry pens, and you’ll spot abrupt color changes where I swapped out a defunct pen on the fly, but they should give you an idea of the variations.

    The more recent plots have a legend in the right bottom corner with coefficients and timestamps:

    SuperFormula Plot - legend detail
    SuperFormula Plot – legend detail

    Limiting the pen speed to 10 cm/s (down from the default 38.1 cm/s = 15.00 inch/s) affects only the outermost segments of the spikes; down near the dense center, the 9600 b/s serial data rate limits the plotting speed. Plotting slowly helps old pens with low flow rates draw reasonably dense lines.

    Each plot takes an hour, which should suffice for most dog-and-pony events.

    I fill a trio of Python lists with useful coefficient values, then choose random elements for each plot: a single value of m determines the number of points for all six traces, then six pairs of values set n1 and n2=n3. The lists are heavily weighted to produce spiky traces, rather than smooth ovals, so the “random” list selections aren’t uniformly distributed across the full numeric range of the values.

    Because the coefficient lists contain fixed values, the program can produce only a finite number of different plots, but I’m not expecting to see any duplicates. You can work out the possibilities by yourself.

    The modified Chiplotle demo code bears little resemblance to the original:

    from chiplotle import *
    from math import *
    from datetime import *
    import random
    
    def superformula_polar(a, b, m, n1, n2, n3, phi):
       ''' Computes the position of the point on a
       superformula curve.
       Superformula has first been proposed by Johan Gielis
       and is a generalization of superellipse.
       see: http://en.wikipedia.org/wiki/Superformula
       Tweaked to return polar coordinates
       '''
    
       t1 = cos(m * phi / 4.0) / a
       t1 = abs(t1)
       t1 = pow(t1, n2)
    
       t2 = sin(m * phi / 4.0) / b
       t2 = abs(t2)
       t2 = pow(t2, n3)
    
       t3 = -1 / float(n1)
       r = pow(t1 + t2, t3)
       if abs(r) == 0:
          return (0,0)
       else:
     #     return (r * cos(phi), r * sin(phi))
         return (r,phi)
    
    
    def supershape(width, height, m, n1, n2, n3, 
       point_count=10*1000, percentage=1.0, a=1.0, b=1.0, travel=None):
       '''Supershape, generated using the superformula first proposed 
       by Johan Gielis.
    
       - `points_count` is the total number of points to compute.
       - `travel` is the length of the outline drawn in radians. 
          3.1416 * 2 is a complete cycle.
       '''
       travel = travel or (10*2*pi)
    
       ## compute points...
       phis = [i * travel / point_count 
          for i in range(1 + int(point_count * percentage))]
       points = [superformula_polar(a, b, m, n1, n2, n3, x) for x in phis]
    
       ## scale and transpose...
       path = [ ]
       for r, a in points:
          x = width * r * cos(a)
          y = height * r * sin(a)
          path.append(Coordinate(x, y))
    
       return Path(path)
    
    
    ## RUN DEMO CODE
    
    if __name__ == '__main__':
       paperx = 8000
       papery = 5000
       tscale = 0.45
       numpens = 6
       m_list = [n/10.0 for n in [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59]];   # prime/10 = number of spikes
       n1_list = [n/100.0 for n in range(15,75,1) + range(80,120,5) + range(120,200,10)]  # ring-ness 0.1 to 2.0, higher is larger diameter
       n2_list = [n/100.0 for n in range(10,50,1) + range(55,100,5) + range(110,200,10)]  # spike-ness 0.1 to 2.0, lower means spiky points
       paramlist = [[n1,n2] for n1 in random.sample(n1_list,numpens) for n2 in random.sample(n2_list,numpens)]
       if  not False:
         plt=instantiate_plotters()[0]
         plt.write('IN;')
    #     plt.write(chr(27) + '.H200:')   # set hardware handshake block size
         plt.set_origin_center()
         plt.write(hpgl.SI(tscale*0.285,tscale*0.375))    # scale based on B size characters
         plt.write(hpgl.VS(10))                           # slow speed for those abrupt spikes
         pen = 1
         plt.select_pen(pen)
         plt.write(hpgl.PA([(paperx - 3000,-(papery - 600))]))
         plt.write(hpgl.LB("Started " + str(datetime.today())))
         m = random.choice(m_list)
         for n1, n2 in zip(random.sample(n1_list,numpens),random.sample(n2_list,numpens)):
            n3 = n2
            print "m: ", m, " n1: ", n1, " n2=n3: ", n2
            plt.write(hpgl.PA([(paperx - 3000,-(papery - 500 + 100*(pen - 1)))]))
            plt.select_pen(pen)
            plt.write(hpgl.LB("Pen " + str(pen) + ": m=" + str(m) + " n1=" + str(n1) + " n2=n3=" + str(n2)))
            e = supershape(paperx, papery, m, n1, n2, n3)
            plt.write(e)
            if pen < numpens: 
                pen += 1
            else:
                pen = 1
         pen = 1
         plt.select_pen(pen)
         plt.write(hpgl.PA([(paperx - 3000,-(papery - 500 + 100*numpens))]))
         plt.write(hpgl.LB("Ended   " + str(datetime.today())))
         plt.select_pen(0)
       else:
         e = supershape(paperx, papery, 1.9, 0.8, 3, 3)
         io.view(e)