Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.
By now, I have half a dozen baggies each containing half a dozen plotter pens, plus a demo program that can produce good-looking Superformula plots, so I can do this without any hassle:
HP 7475A 2541A 68465 – Random pens
And this:
HP 7475A 2641V 26599 – Random pens
I must confess to not being good at withstanding temptation; the second plot comes from another HP 7475A plotter that I won on eBay:
Stacked HP 7475A Plotters
Apparently, nobody else wanted a plotter advertised as “non-working”, leaving me as the sole bidder. The photos showed that it powered up properly, sported a serial (not HPIB) interface, had an (empty) carousel with rubber pen boots (that were, oddly enough, not fossilized), and came with a complete set of manuals. Turns out any one of those items sells for more than the entire package, so I can part it out, flip the pieces, and Profit! if I were so inclined.
Load the carousel with a handful of restored pens, insert a sheet of paper, hold down the P1 + P2 buttons, flip the power switch, and out comes a perfectly drawn demo plot:
Victoreen 710-104 Ionization Chamber Fittings – Show V2
There’s not much difference from the first iteration, apart from a few code cleanups. The engraved text is kinda-sorta gratuitous, but I figured having the circuit board dimensions on all the key parts would avoid heartache & confusion; the code now autosizes the board to the holder OD. Skeletonizing the board template didn’t save nearly as much printing time as I expected, though.
Now I can build a second electrometer amp without dismantling the two-transistor version.
The OpenSCAD source code:
// Victoreen 710-104 Ionization Chamber Fittings
// Ed Nisley KE4ZNU August 2015
Layout = "Show";
// Show - assembled parts
// Build - print can parts + shield
// BuildShield - print just the shield
// BuildHolder - print just the can cap & PCB base
// CanCap - PCB insulator for 6-32 mounting studs
// CanBase - surrounding foot for ionization chamber
// CanRim - generic surround for either end of chamber
// PCB - template for cutting PCB sheet
// PCBBase - holder for PCB atop CanCap
// Shield - electrostatic shield shell
//- Extrusion parameters must match reality!
// Print with 2 shells and 3 solid layers
ThreadThick = 0.25;
ThreadWidth = 0.40;
HoleWindage = 0.2;
Protrusion = 0.1; // make holes end cleanly
AlignPinOD = 1.75; // assembly alignment pins = filament dia
inch = 25.4;
function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
//- Screw sizes
Tap4_40 = 0.089 * inch;
Clear4_40 = 0.110 * inch;
Head4_40 = 0.211 * inch;
Head4_40Thick = 0.065 * inch;
Nut4_40Dia = 0.228 * inch;
Nut4_40Thick = 0.086 * inch;
Washer4_40OD = 0.270 * inch;
Washer4_40ID = 0.123 * inch;
//----------------------
// Dimensions
OD = 0; // name the subscripts
LENGTH = 1;
Chamber = [91.0,38]; // Victoreen ionization chamber dimensions
Stud = [ // stud welded to ionization chamber lid
[6.5,IntegerMultiple(0.8,ThreadThick)], // flat head -- generous clearance
[4.0,9.5], // 6-32 screw -- ditto
];
NumStuds = 3; // this really isn't much of a variable...
StudAngle = 360/NumStuds;
StudSides = 6; // for hole around stud
BCD = 2.75 * inch; // mounting stud bolt circle diameter
PlateThick = 2.0; // minimum layer atop and below chamber ends
RimHeight = 4.0; // extending along chamber perimeter
WallHeight = RimHeight + PlateThick;
WallThick = 3.0; // thick enough to be sturdy & printable
CapSides = 8*6; // must be multiple of 4 & 3 to make symmetries work out right
RimOD = Chamber[OD] + 2*WallThick;
echo(str("Rim OD: ",RimOD));
//PCBFlatsOD = 82.0; // desired hex dia flat-to-flat
PCBFlatsOD = floor(RimOD*cos(30)) - 2.0; // .. maximum possible
//PCBFlatsOD = floor(Chamber[OD]*cos(30)) - 2.0; // .. chamber fitting
PCBClearance = ThreadWidth; // clearance beyond each flat for mounting
PCBThick = 1.1;
PCBActual = [PCBFlatsOD/cos(30),PCBThick]; // OD = tip-to-tip
PCBCutter = [(PCBFlatsOD + 2*PCBClearance)/cos(30),PCBThick - ThreadThick]; // OD = tip-to-tip dia + clearance
PCBSize = str(PCBFlatsOD, " mm");
echo(str("Actual PCB across flats: ",PCBFlatsOD));
echo(str(" ... tip-to-tip dia: ",PCBActual[OD]));
echo(str(" ... thickness: ",PCBActual[LENGTH]));
HolderHeight = 13.0 + PCBCutter[LENGTH]; // thick enough for PCB to clear studs + batteries
HolderShelf = 2.0; // shelf under PCB edge
HolderTrim = 5.0; // remove end of holder to clear PCB edge solder blobs
echo(str("Holder trim distance: ",HolderTrim));
HolderTrimAngle = StudAngle/2 - 2*atan(HolderTrim*cos(StudAngle/2)/(PCBActual[OD]/2)); // atan is close for small angles
echo(str(" ... angle: ",HolderTrimAngle));
PinAngle = 15; // alignment pin angle on either side of holder screw
echo(str("PCB holder across flats: ",PCBCutter[OD]*cos(30)));
echo(str(" ... height: ",HolderHeight));
ShieldInset = 0.5; // shield inset from actual PCB flat
ShieldWall = 2.0; // wall thickness
ShieldLid = 6*ThreadThick; // top thickness (avoid one infill layer)
Shield = [(PCBFlatsOD - 2*ShieldInset)/ cos(30),40.0]; // electrostatic shield shell dimensions
TextSize = 4;
TextCharSpace = 1.05;
TextLineSpace = TextSize + 2;
TextDepth = 1*ThreadThick;
//----------------------
// Useful routines
module PolyCyl(Dia,Height,ForceSides=0) { // based on nophead's polyholes
Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
FixDia = Dia / cos(180/Sides);
cylinder(r=(FixDia + HoleWindage)/2,
h=Height,
$fn=Sides);
}
//- Locating pin hole with glue recess
// Default length is two pin diameters on each side of the split
module LocatingPin(Dia=AlignPinOD,Len=0.0) {
PinLen = (Len != 0.0) ? Len : (4*Dia);
translate([0,0,-ThreadThick])
PolyCyl((Dia + 2*ThreadWidth),2*ThreadThick,4);
translate([0,0,-2*ThreadThick])
PolyCyl((Dia + 1*ThreadWidth),4*ThreadThick,4);
translate([0,0,-Len/2])
PolyCyl(Dia,Len,4);
}
module ShowPegGrid(Space = 10.0,Size = 1.0) {
RangeX = floor(100 / Space);
RangeY = floor(125 / Space);
for (x=[-RangeX:RangeX])
for (y=[-RangeY:RangeY])
translate([x*Space,y*Space,Size/2])
%cube(Size,center=true);
}
//-----
module CanRim(BaseThick) {
difference() {
cylinder(d=Chamber[OD] + 2*WallThick,h=(WallHeight + BaseThick),$fn=CapSides);
translate([0,0,BaseThick])
PolyCyl(Chamber[OD],Chamber[LENGTH],CapSides);
}
}
module CanCap() {
difference() {
CanRim(PlateThick + Stud[0][LENGTH]);
translate([0,0,-Protrusion]) // central cutout
rotate(180/6)
cylinder(d=BCD,h=Chamber[LENGTH],$fn=6); // ... reasonable size
for (i=[0:(NumStuds - 1)]) // stud clearance holes
rotate(i*StudAngle)
translate([BCD/2,0,0])
rotate(180/StudSides) {
translate([0,0,PlateThick])
PolyCyl(Stud[0][OD],Chamber[LENGTH],StudSides);
translate([0,0,-Protrusion])
PolyCyl(Stud[1][OD],Chamber[LENGTH],StudSides);
}
for (i=[0:(NumStuds - 1)], j=[-1,1]) // PCB holder alignment pins
rotate(i*StudAngle + j*PinAngle + 60)
translate([Chamber[OD]/2,0,0])
rotate(180/4 - j*PinAngle)
LocatingPin(Len=2*(PlateThick + Stud[0][LENGTH]) - 4*ThreadThick);
translate([-(BCD/2),0,-Protrusion])
rotate(90) mirror()
linear_extrude(height=(ThreadThick + Protrusion))
text(PCBSize,size=6,font="Liberation Mono:style=bold",halign="center",valign="center");
}
}
module CanBase() {
difference() {
CanRim(PlateThick);
translate([0,0,-Protrusion])
PolyCyl(Chamber[OD] - 2*RimHeight,Chamber[LENGTH],CapSides);
}
}
module PCBTemplate() {
CutLen = 10*PCBActual[LENGTH];
difference() {
cylinder(d=PCBActual[OD],h=PCBActual[LENGTH],$fn=6); // actual PCB size
translate([0,0,-Protrusion])
cylinder(d=8,h=CutLen,$fn=12);
if (true)
for (i=[0:5]) // empirical cutouts
rotate(i*60 + 30)
translate([PCBFlatsOD/3,0,-Protrusion])
rotate(60)
cylinder(d=0.43*PCBActual[OD],h=CutLen,$fn=3);
translate([PCBActual[OD]/4,0,(PCBActual[LENGTH] - ThreadThick)])
linear_extrude(height=(ThreadThick + Protrusion),convexity=1)
text(PCBSize,size=4,font="Liberation Mono:style=bold",halign="center",valign="center");
}
}
module PCBBase() {
intersection() {
difference() {
cylinder(d=Chamber[OD] + 2*WallThick,h=HolderHeight,$fn=CapSides); // outer rim
rotate(30) {
translate([0,0,-Protrusion]) // central hex
cylinder(d=(PCBActual[OD] - HolderShelf/cos(30) - HolderShelf/cos(30)),h=2*HolderHeight,$fn=6);
translate([0,0,HolderHeight - PCBCutter[LENGTH]]) // hex PCB recess
cylinder(d=PCBCutter[OD],h=HolderHeight,$fn=6);
for (i=[0:NumStuds - 1]) // PCB retaining screws
rotate(i*StudAngle + 180/(2*NumStuds))
translate([(PCBCutter[OD]*cos(30)/2 + Clear4_40/2 + ThreadWidth),0,-Protrusion])
rotate(180/6)
PolyCyl(Tap4_40,2*HolderHeight,6);
for (i=[0:(NumStuds - 1)], j=[-1,1]) // PCB holder alignment pins
rotate(i*StudAngle + j*PinAngle + 180/(2*NumStuds))
translate([Chamber[OD]/2,0,0])
rotate(180/4 - j*PinAngle)
LocatingPin(Len=2*(HolderHeight - 4*ThreadThick));
}
if (false)
for (i=[0:NumStuds - 1])
rotate(i*StudAngle - StudAngle/2) // segment isolation - hex sides
translate([0,0,-Protrusion]) {
linear_extrude(height=2*HolderHeight)
polygon([[0,0],[Chamber[OD],0],[Chamber[OD]*cos(180/NumStuds),Chamber[OD]*sin(180/NumStuds)]]);
}
translate([-(PCBFlatsOD/2 + PCBClearance - HolderShelf),0,HolderHeight/2])
rotate([0,90,0]) rotate(90)
linear_extrude(height=(ThreadWidth + Protrusion))
text(PCBSize,size=6,font="Liberation Mono:style=bold",halign="center",valign="center");
}
for (i=[0:NumStuds - 1])
rotate(i*StudAngle + StudAngle/2 - HolderTrimAngle/2) // trim holder ends
translate([0,0,-Protrusion]) {
linear_extrude(height=2*HolderHeight)
polygon([[0,0],[Chamber[OD],0],[Chamber[OD]*cos(HolderTrimAngle),Chamber[OD]*sin(HolderTrimAngle)]]);
}
}
}
//-- Electrostatic shield
// the cutouts are completely ad-hoc
module ShieldShell() {
CutHeight = 7.0;
difference() {
cylinder(d=Shield[OD],h=Shield[LENGTH],$fn=6); // exterior shape
translate([0,0,-ShieldLid]) // interior
cylinder(d=(Shield[OD] - 2*ShieldWall/cos(30)),h=Shield[LENGTH],$fn=6);
translate([0,0,Shield[LENGTH] - TextDepth])
rotate(180) {
translate([0,0.3*Shield[OD] - 0*TextLineSpace,0])
linear_extrude(height=(TextDepth + Protrusion))
text("Gamma",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
translate([0,0.3*Shield[OD] - 1*TextLineSpace,0])
linear_extrude(height=(TextDepth + Protrusion))
text("Ionization",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
translate([0,0.3*Shield[OD] - 2*TextLineSpace,0])
linear_extrude(height=(TextDepth + Protrusion))
text("Amplifier",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
translate([0,-0.3*Shield[OD] + 1*TextLineSpace,0])
linear_extrude(height=(TextDepth + Protrusion))
text("KE4ZNU",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
translate([0,-0.3*Shield[OD] + 0*TextLineSpace,0])
linear_extrude(height=(TextDepth + Protrusion))
text("2015-08",size=TextSize,spacing=TextCharSpace,font="Liberation:style=bold",halign="center",valign="center");
}
translate([Shield[OD]/4 - 20/2,Shield[OD]/2,(CutHeight - Protrusion)/2]) // switch
rotate(90)
cube([Shield[OD],20,CutHeight + Protrusion],center=true);
if (false)
translate([-Shield[OD]/4 + 5/2,Shield[OD]/2,(CutHeight - Protrusion)/2]) // front
rotate(90)
cube([Shield[OD],5,CutHeight + Protrusion],center=true);
translate([-Shield[OD]/2,0,(CutHeight - Protrusion)/2]) // right side
cube([Shield[OD],7,CutHeight + Protrusion],center=true);
translate([0,(Shield[OD]*cos(30)/2 - ThreadWidth),0.75*Shield[LENGTH]])
rotate([90,0,180]) rotate(00)
linear_extrude(height=(ThreadWidth + Protrusion))
text(PCBSize,size=5,font="Liberation Mono:style=bold",halign="center",valign="center");
}
}
//----------------------
// Build it
ShowPegGrid();
if (Layout == "CanRim") {
CanRim();
}
if (Layout == "CanCap") {
CanCap();
}
if (Layout == "CanBase") {
CanBase();
}
if (Layout == "PCBBase") {
PCBBase();
}
if (Layout == "PCB") {
PCBTemplate();
}
if (Layout == "Shield") {
ShieldShell();
}
if (Layout == "Show") {
CanBase();
color("Orange",0.5)
translate([0,0,PlateThick + Protrusion])
cylinder(d=Chamber[OD],h=Chamber[LENGTH],$fn=CapSides);
translate([0,0,(2*PlateThick + Chamber[LENGTH] + 2*Protrusion)])
rotate([180,0,0])
CanCap();
translate([0,0,(2*PlateThick + Chamber[LENGTH] + 5.0)])
PCBBase();
color("Green",0.5)
translate([0,0,(2*PlateThick + Chamber[LENGTH] + 7.0 + HolderHeight)])
rotate(30)
PCBTemplate();
translate([0,0,(2*PlateThick + Chamber[LENGTH] + 15.0 + HolderHeight)])
rotate(-30)
ShieldShell();}
if (Layout == "Build") {
translate([-0.50*Chamber[OD],-0.60*Chamber[OD],0])
CanCap();
if (false)
translate([0.55*Chamber[OD],-0.60*Chamber[OD],0])
rotate(30)
translate([0,0,Shield[LENGTH]])
rotate([0,180,0])
ShieldShell();
if (true)
translate([0.55*Chamber[OD],-0.60*Chamber[OD],0])
rotate(30)
PCBTemplate();
if (true)
translate([-0.25*Chamber[OD],0.60*Chamber[OD],0])
CanBase();
translate([0.25*Chamber[OD],0.60*Chamber[OD],0])
PCBBase();
}
if (Layout == "BuildHolder") {
translate([-0.25*Chamber[OD],0,0])
CanCap();
translate([0.25*Chamber[OD],0,0])
PCBBase();
}
if (Layout == "BuildShield") {
translate([0,0,Shield[LENGTH]])
rotate([0,180,0])
ShieldShell();
}
Thinwall open boxes – side detail – 4.98 4.85 measured
Alas, the shutter failed after that image, leaving me with pictures untaken and naught to take them with.
The least-awful alternative seems to be gimmicking up an adapter for a small USB camera from the usual eBay source:
Fashion USB video – case vs camera
The camera’s 640×480 VGA resolution is marginally Good Enough for the purpose, as I can zoom the microscope to completely fill all those pixels. The optics aren’t up to the standard set by the microscope, but we can cope with that for a while.
A bit of doodling & OpenSCAD tinkering produced a suitable adapter:
USB Camera Microscope Mount – solid model
To which Slic3r applied the usual finishing touches:
USB Camera Microscope Mount – Slic3r preview
A bit of silicone tape holds the sloppy focusing thread in place:
USB Camera Microscope Mount – cap with camera
Those are 2-56 screws that will hold the cap onto the tube. I drilled out the clearance holes in the cap and tapped the holes in the eyepiece adapter by hand, grabbing the bits with a pin vise.
Focus the lens at infinity, which in this case meant an old DDJ cover poster on the far wall of the Basement Laboratory, and then it’ll be just as happy with the image coming out of the eyepiece as a human eyeball would be.
I put a few snippets of black electrical tape atop the PCB locating tabs before screwing the tube in place. The tube ID is 1 mm smaller than the PCB OD, in order to hold the PCB perpendicular to the optical axis and clamp it firmly in place. Come to find out that the optical axis of the lens isn’t perfectly perpendicular to the PCB, but it’s close enough for my simple needs.
And then it fits just like you’d expect:
USB Camera Microscope Mount – on eyepiece
Actually, that’s the second version. The distance from the camera lens (equivalently: the PCB below the optical block, which I used as the datum plane) to the eyepiece is a critical dimension that determines whether the image fills the entrance pupil. I guesstimated the first version by hand-holding the camera and measuring with a caliper, tried it out, then iteratively whacked 2 mm off the tube until the image lit up properly:
USB Camera Microscope Mount – adjusting tube length
Minus 4 mm made it slightly too short, but then I could measure the correct position, tweak that dimension in the code, and get another adapter, just like the first one (plus a few other minor changes), except that it worked:
USB Camera Microscope Mount – first light
That’s a screen capture from VLC, which plays from /dev/video0 perfectly. Some manual exposure & color balance adjustment may be in order, but it’s pretty good for First Light.
It turns out that removing the eyepiece and holding the bare sensor over the opening also works fine. The real image from the objective fills much more area than the camera’s tiny sensor: the video image covers about one digit in that picture, but gimmicking up a bare-sensor adapter might be useful.
That can also come from a sensor failure, but it takes perfectly good movies. That’s the differential diagnosis for shutter failure, because movies don’t use the shutter.
The shutter still functions, in that peering into the lens shows the shutter closing as it takes a picture, so I suspect it’s gotten a bit sticky and slow over the years. None of the various shutter-priority speeds have any effect, which means that the shutter isn’t responding properly.
A quick read of the service manual shows the Field Replaceable Unit for this situation is the entire lens assembly. Back in the day, a new lens assembly came with its own calibration constants on a floppy disk that you’d install with Casio’s service program (the latest version ran with Windows 98!) using a special USB communication mode triggered by a Vulcan Nerve Pinch on the camera. At this late date, none of that stuff remains available.
While I could take the camera apart and crack the lens capsule open, I doubt that would make it better and, in this case, ending up with a crappy camera doesn’t count for much. Extracting the lens assembly requires dismantling the entire thing, which, frankly, doesn’t seem worth the effort…
That image is number 7915: so it’s taken a bit over two images per day for the last nine years. I can’t swear the counter has never been reset, but that seems about right.
The burner in our oven failed in December 2006, probably because the charred remains of an insect produced a hotspot:
Burned Oven Tube Overview
That replacement burner came with its own igniter that failed after 8.5 years, with symptoms of slow oven ignition and the occasional smell of propane.
In normal operation, the igniter element glows yellow-hot for a minute or so before the valve opens, gas flows over the igniter, there’s a muffled whoomf, and the oven begins heating. The igniter remains powered as long as the oven is on, emitting a baleful yellow glare through the slots in the oven’s lower cover.
It consists of a ceramic base holding a stout resistance heater that apparently suffers from increasing resistance as it ages, reducing the current to the point where it won’t activate the gas valve.
I didn’t know that, either, but Google sees all, knows all, and tells most.
The gas valve label says it requires 3.3 to 3.6 A from the heater to turn on the gas:
Kenmore range oven gas valve – data plate
But the old heater was good for barely 2.6 A (there’s a bit of parallax in this view):
Kenmore range oven gas valve – weak igniter current
Igniters range from $18 to upwards of $60 on Amazon, so I picked the cheapest one, waited two days, installed it, and measured 3.5 A at First Light, down to a bit over 3.0 A at running temperature. That’s on the low side of the valve’s spec, but it seems happier with an extra half amp.
We’ll see how long this igniter lasts; maybe next time I’ll double my spend…
The previous cards were made in Korea, but this one came from Taiwan with a different serial number format:
Sony SR-64UX 64 GB MicroSDXC card – back
The tiny letters on the front identify it as an SR-64UX, but I haven’t been able to find any definitive Sony source describing the various cards; their catalog page listing cards for digital still cameras may be as good as it gets. This one seems to have a higher read speed, for whatever little good that may do.
It stored and regurgitated the usual deluge of video files with no problem, which is only to be expected. This time around, I checked the MD5 sums, rather than unleashing diff on the huge files:
cd /media/ed/9C33-6BBD/
for f in * ; do find /mnt/video/ -name $f | xargs md5sum $f ; done
11e31c9ba3befbef6dd3630bb68064d6 MAH00539.MP4
11e31c9ba3befbef6dd3630bb68064d6 /mnt/video/2015-07-05/MAH00539.MP4
... snippage ...
It now sits in the fancy plastic display case that the HDR-AS30V camera came in until the previous replacement card fails.