Advertisements

Squidwrench Electronics Workshop: Session 3

Ex post facto notes from the third Squidwrench Electronics Workshop.

Exhibit various 50 Ω resistors, including my all-time favorite, a 600 W 3 GHz dummy load:

600 W Dummy Load Resistor

600 W Dummy Load Resistor

… down to a 1/8 Ω metal film resistor.

The dummy load’s N connector triggered a regrettable digression into RF, belatedly squelched because I wasn’t prepared to extemporize on AC concepts like reactance which we haven’t covered yet.

Discussion of resistor applications, power handling, power derating with temperature, etc:

Whiteboard - Session 3 - Resistor power derating

Whiteboard – Session 3 – Resistor power derating

Why you generally won’t find 50 Ω load resistors in Raspberry Pi circuits. Cartridge heaters for 3D printers, not aluminum power resistors, although everyone agrees they look great:

Power resistors on heat spreader

Power resistors on heat spreader

Discussion of voltage vs. current sources, why voltage sources want low internal resistances and current sources want high resistances. Bungled discussion of current sources by putting diodes in parallel; they should go in series to show how added voltage doesn’t change current (much!) in sources driven from higher voltages through higher resistances:

Whiteboard - Session 3 - Voltage vs Current Sources

Whiteboard – Session 3 – Voltage vs Current Sources

Use Siglent SDM3045X DMM in diode test mode to measure forward drop of power / signal / colored LEDs, discuss voltage variation with color / photon energy. Measure 1.000 mA test current for all forward voltages.

Compute series resistor (500 Ω) to convert adjustable power supply (the digital tattoo box, a lesson in itself) into reasonable current source; roughly 10 V → 20 mA. Find suitable resistor (560 Ω) in SqWr junk box parts assortment, digression into color band reading.

Wire circuit with meters to measure diode current (series!) and voltage (parallel!), measure same hulking power diode (after discovering insulating washers now in full effect) as before in 1 mA steps to 10 mA, then 15 and 20 mA, tabulate & plot results:

Whiteboard - Session 3 - Diode current vs forward drop

Whiteboard – Session 3 – Diode current vs forward drop

Discover warm resistor, compute power at 20 mA, introduce cautionary tales.

Lesson learned about never returning parts to inventory, with 560 Ω resistor appearing in diode drawer. Cautionary tales about having benchtop can of used parts as front-end cache for inventory backing store.

Another intense day of bench work!

Advertisements

,

  1. Leave a comment

Spam comments vanish. Comment moderation may cause a delay.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s