Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.
Tag: Thing-O-Matic
Using and tweaking a Makerbot Thing-O-Matic 3D printer
This iteration of the case latch has slightly larger brass tubing on the ends, hand filed to match the case angle:
Shaping case latch bar
It’s pretty much the same process described there and is why I set up that slitting saw arbor for the next time.
The final result looks pretty good:
HT-GPS Case – Latch plate detail
Those tubing snippets really must be two different lengths: the bar slides to the right (in that picture) to release the case, so:
The short tube and the notch must fit into the space between the edge of the case and the release slot.
The long tube slides outward, with a mark to indicate when the notches align with the release slots.
In principle, you could slide the bar until the shorter tube jams against the latch ramp on the radio, but this case (plus the end caps) turned out to be exactly as long as the distance available and is a rather snug press fit. The next version will be 0.75 mm shorter and should fit better, although snug is good in this situation.
A three-pack of 100-tooth 2 inch cutoff saw blades followed me home from Harbor Freight a while ago. Although they’re intended for a craptastic HF tabletop saw, I thought they might come in handy on the Sherline for slicing lengths of brass tubing. The reviews for the saw indicate the blades are no good for steel, barely adequate for brass, and dandy for wood; they have nowhere near enough teeth for a screw cutoff blade.
None of the arbors in my collection fit a blade with a 3/8 inch hole, so a bit of lathe work produced one while the 3D printer cranked out a GPS+audio case:
Cutoff saw arbor in Sherline toolholder
The shaft is 3/8 inch drill rod and the collars are 3/4 inch drill rod, both of O1 oil-hardening steel that will remain forever unhardened, fitting into a Sherline endmill toolholder. I drilled-and-bored the collars to a slip fit on the shaft, then epoxied the rear one in place:
img_2156 – Cutoff saw arbor – parts
I drilled a 0.6 inch deep blind hole in the shaft and tapped it 10-32 all the way down for a 1/2 inch SHCS. A bag of assorted 10-32 taps produced a bottoming tap that came in handy, but I put tapping in the same category as parallel parking: I’ll walk half a mile to not parallel park the van. Couldn’t avoid it this time.
The flat on the shaft came from a bit of hand filing, which was easier than setting up the mill.
The front collar’s undercut ensures just the rim contacts the blade. The photo shows the vanishingly thin layer of epoxy on the rear collar that mooshed out as I clamped the stack together:
Fixed (rear) collar
Waxed paper with a 3/8 inch hole punched in the middle
Cutoff blade
Split lockwasher for a bit of space
Loose (front) collar
Socket head cap screw
After the epoxy cured, a pass through the lathe skimmed off that thin epoxy layer and trued up the fixed collar face to eliminate the last bit of wobble. The radial runout remains just enough so that one tooth tings before the others engage, but I’m not entirely convinced that’s due to the (minimal) shaft-to-blade clearance.
In use, putting the split lockwasher between the loose collar and the SHCS provides a little clamping compliance.
At some point, I’m sure this thing will come in handy…
This case has a few refinements beyond that one, but it’s recognizably a descendant. The main changes:
The HT cable port on the side has a nice polygonal roof to reduce overhang
The serial connector sits in a recess to allow a thicker top plate
Smaller opening for the LEDs; I’ll get a window in this one, fer shure, yeah
4-40 screws hold the base plate on; setscrews may work and look better
Looks like I’ll be using blue filament for this version, having just discovered the last of the weird colors in the bottom of the 5 gallon bucket serving as a storage bin.
A view from the top:
Solid Model – Oblique Exploded Top
And from the base:
Solid Model – Oblique Exploded Base
The OpenSCAD source code:
// Wouxun KB-UV3D Battery Pack Case
// Ed Nisley KE4ZNU July 2012
include </home/ed/Thing-O-Matic/lib/MCAD/units.scad>
include </home/ed/Thing-O-Matic/Useful Sizes.scad>
// Layout options
Layout = "Show";
// Overall layout: Fit Show
// Printing plates: Build1 .. Buildn (see bottom!)
// Parts: TT3 Audio DSub Shell Base Top
// Shapes: RadioBase Contact
// Speaker-mic mount: PlugPlate
ShowGap = 10; // spacing between parts in Show layout
//- Extrusion parameters must match reality!
// Print with +1 shells and 3 solid layers
ThreadThick = 0.25;
ThreadWidth = 2.0 * ThreadThick;
HoleWindage = 0.2;
function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
Protrusion = 0.1; // make holes end cleanly
//----------------------
// Dimensions
CaseOverallHeight = 31.5; // from battery surface, must clear PCBs!
CaseOverallWidth = 56;
CaseOverallLength = 80.25; // inside of base to end of compartment
BatteryClearance = 1.5; // contact seal height = air gap to compartment
// Interface to radio battery contacts
// Length = shell length
// calculated after everything else, so as to fill the compartment
ContactDia = 6.0; // use rounded contact for simplicity
ContactRecess = IntegerMultiple(0.75,ThreadThick); // recess for contact plate
ContactGapX = 10.5; // X space between contacts
Contact1Y = 52.5; // offset from base to edge of contact
Contact2Y = 56.5;
ContactStudDia = Clear4_40;
ContactStudHead = IntegerMultiple(Head4_40,ThreadWidth);
ContactStudHeadThick = Head4_40Thick;
PlateWidthMin = 53.0;
PlateWidthMax = 54.5;
PlateThick = IntegerMultiple(ContactRecess + ContactStudHeadThick,ThreadThick);
PlateAngle = atan(PlateThick/(PlateWidthMax/2 - PlateWidthMin/2));
echo("Battery plate thick: ",PlateThick);
// Offsets from battery surface to PCB centerlines
// TT3 must be above HT back shell for DB9 clearance
// These must cooperate with the numbers in the case shell module
TT3Offset = 17.5 + PlateThick;
AudioOffset = 4.0 + PlateThick;
// Plate interface to base alignment holes and notches
BaseWidthInner = PlateWidthMin;
BaseWidthOuter = CaseOverallWidth;
BaseLength = CaseOverallHeight; // perpendicular to battery surface
BaseThick = IntegerMultiple(1.0,ThreadThick); // minimum sheet thickness below teeth
BaseWidthTaper = 5.0; // ramp across entire width
BaseOpeningMax = 43.0;
BaseOpeningMin = 33.0;
BaseOpeningY = 5.3;
BaseOpeningDepth = IntegerMultiple(2.25,ThreadThick);
BaseTotalThick = BaseThick + BaseOpeningDepth;
echo("Base min thick: ",BaseThick," total: " ,BaseTotalThick);
BaseTabWidth = 6.0;
BaseTabThick = 2.0;
BaseTabGap = 7.0;
BaseTabOC = BaseTabWidth + BaseTabGap;
BaseToothSection = 3*BaseTabWidth + 2*BaseTabGap;
BaseToothBase = 5.8;
BaseToothTip = 2.8;
BaseToothThick = 2.0;
BaseToothAngle = atan(BaseOpeningDepth/0.6);
BaseToothOC = BaseTabOC;
WedgeAngle = atan(BaseWidthTaper/((BaseWidthOuter - BaseWidthInner)/2));
BaseEndLip = ThreadThick; // should be 0.25 mm or so
BaseEndWidth = (PlateWidthMin - 3*BaseToothBase - 2*BaseToothTip)/2;
BaseEndAngle = atan((BaseOpeningDepth - BaseEndLip)/BaseOpeningY);
SwitchBody = [8.6,3.7,3.3]; // mode switch
// Plate interface to HT battery latch, cables, and connectors
TopThick = IntegerMultiple(5.5,ThreadThick); // plate thickness for stiffness behind latch bar
echo("Top plate thick: ",TopThick);
DB9Recess = TopThick - 4.0; // recess to max TT3 PCB clearance behind DB9 plate
TabEngageLength = 1.6; // tab engaging surface length
TabWidth = 3.0; // ... width
TabEngageHeight = 4.5; // ... above battery compartment floor
TabHeight = 7.5; // tab ramp top above battery compartment floor
TabOC = 40.0;
LatchBarWidth = 3.4; // sliding latch mechanism (brass L stock)
LatchBarDepth = 3.4;
LatchBarThick = 0.35;
echo(" ... minimum: ",TopThick - LatchBarDepth);
SplitOffset = TT3Offset - 3.5;
TopBevel = 1.0; // bevel at top of battery compartment
TopBevelAngle = 45;
PinOffsetWidth = 2.5; // choose to center in sides of case shell
PinOffsetHeight = 13.5; // above baseplate bottom
PinDepth = 7.0; // into case shell
PinDia = 1.2;
ShellLength = CaseOverallLength - BaseThick - TopThick;
echo("Shell length: ",ShellLength);
// Speaker-mic plug plate
PlugBaseThick = 2.5; // recess depth
PlugFillThick = 3.0; // outer plate thickness
//----------------------
// Useful routines
module PolyCyl(Dia,Height,ForceSides=0) { // based on nophead's polyholes
Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
FixDia = Dia / cos(180/Sides);
cylinder(r=(FixDia + HoleWindage)/2,
h=Height,
$fn=Sides);
}
module ShowPegGrid(Space = 10.0,Size = 1.0) {
Range = floor(50 / Space);
for (x=[-Range:Range])
for (y=[-Range:Range])
translate([x*Space,y*Space,Size/2])
%cube(Size,center=true);
}
//-------------------
// Component parts
//-----
// TinyTrak3+ PCB and component envelope
// Some dimensions should feed into the case shell, but don't
module TinyTrak3(Length = 1.0) {
PCBThick = 1.6;
PCBWide = 36.5;
TopHigh = 9.5;
TopWide = PCBWide - 1.5;
BotHigh = 2.5;
BotWide = 35.0;
PCBx = PCBWide/2;
PCBy = (PCBThick + HoleWindage)/2;
URx = TopWide/2;
URy = PCBy + TopHigh;
LRx = BotWide/2;
LRy = PCBy + BotHigh;
linear_extrude(height=Length,center=false,convexity=2) {
polygon(points=[[URx,URy],[URx,PCBy],[PCBx,PCBy],[PCBx,-PCBy],[LRx,-PCBy],[LRx,-LRy],
[-LRx,-LRy],[-LRx,-PCBy],[-PCBx,-PCBy],[-PCBx,PCBy],[-URx,PCBy],[-URx,URy]
]);
}
}
//-----
// Interface PCB and component envelope
// Some dimensions should feed into the case shell, but don't
module AudioInterface(Length = 1.0) {
PCBThick = 2.0;
PCBWide = 49.5;
TopHigh = 9.0 + Protrusion;
TopWide = 46.0;
BotHigh = 3.0;
BotWide = 44.0;
PCBx = PCBWide/2;
PCBy = (PCBThick + HoleWindage)/2;
URx = TopWide/2;
URy = PCBy + TopHigh;
LRx = BotWide/2;
LRy = PCBy + BotHigh;
linear_extrude(height=Length,center=false,convexity=2) {
polygon(points=[[URx,URy],[URx,PCBy],[PCBx,PCBy],[PCBx,-PCBy],[LRx,-PCBy],[LRx,-LRy],
[-LRx,-LRy],[-LRx,-PCBy],[-PCBx,-PCBy],[-PCBx,PCBy],[-URx,PCBy],[-URx,URy]
]);
}
}
//-----
// DB-9 (DE-9) panel opening
// http://www.interfacebus.com/Connector_D-Sub_Mechanical_Dimensions.html
// DB-9 shell mounts on outside surface of case
// This is for the solder terminal side
module DSubMin9(Length = 1.0) {
Holex = 0.984/2 * inch;
HoleDia = Tap4_40;
URx = 0.769/2 * inch;
URy = 0.432/2 * inch;
linear_extrude(height=Length,center=false,convexity=3) {
polygon(points=[[URx,URy],[URx,-URy],[-URx,-URy],[-URx,URy]]);
for (x = [-1,1]) {
translate([x*Holex,0,0])
rotate(45) circle(r=(HoleDia + HoleWindage)/2,$fn=4);
}
}
}
//-----
// Central case shape
// This *should* depend directly on the circuit board sizes, but doesn't
// The "Offset" parameters attempt to bottle up all the board sizes
// Support in LED window must be hand-fit to work correctly... and isn't needed!
module CaseShell(Length=(ShellLength),Holes="true") {
// Polygon coordinates are in XY plane
URx = 40.0/2;
URy = CaseOverallHeight;
MRx = CaseOverallWidth/2;
MRy = 15.0;
LRx = CaseOverallWidth/2;
LRy = (LRx - PlateWidthMin/2)*tan(PlateAngle);
BRx = PlateWidthMax/2;
BRy = PlateThick - 0*Protrusion;
PRx = PlateWidthMin/2; // combined battery plate
PRy = 0;
ScrewOffset = 20.0; // from top end of case
LEDWindow = [26.0,5.0,6]; // with case aligned vertically
LEDOffset = [15,URy,(Length + TopThick - 25.0)];
TrimPot1 = [-14,TT3Offset,(Length + TopThick - 30)];
TrimPot2 = [-14,TT3Offset,(Length + TopThick - 37.5)];
HTCableDia = 3.5;
HTCableOffset = AudioOffset + HTCableDia/2 + 1.0;
rotate([90,0,180])
union() {
difference() {
linear_extrude(height=Length,center=false,convexity=5)
polygon(points=[[URx,URy],[MRx,MRy],[LRx,LRy],[BRx,BRy],[PRx,PRy],
[-PRx,PRy],[-BRx,BRy],[-LRx,LRy],[-MRx,MRy],[-URx,URy]]);
if (Holes) {
translate([0,AudioOffset,-Protrusion])
AudioInterface(Length + 2*Protrusion);
translate([0,TT3Offset,-Protrusion])
TinyTrak3(Length + 2*Protrusion);
for (y = [TT3Offset,AudioOffset])
translate([-CaseOverallWidth,y,(Length - ScrewOffset)])
rotate([0,90,0])
rotate(0) // Z rotation puts point upward for printing
PolyCyl(Tap4_40,CaseOverallWidth);
translate(LEDOffset)
rotate([90,90,0])
translate([-LEDWindow[0]/2,-LEDWindow[1]/2,-Protrusion])
cube(LEDWindow,center=false);
for (p = [TrimPot1,TrimPot2])
translate(p)
rotate([-90,90,0]) // Y rotation puts point upward for printing
PolyCyl(3.0,URy);
for (x=[-1,1]) {
translate([x*(CaseOverallWidth/2 - PinOffsetWidth),
PinOffsetHeight,
(Length - PinDepth)])
rotate(45) // align hole sides with case sides
PolyCyl(PinDia,2*TopThick);
translate([x*(CaseOverallWidth/2 - PinOffsetWidth),
PinOffsetHeight,
-PlateThick])
rotate(45) // align hole sides with case sides
PolyCyl(PinDia,(PlateThick + PinDepth));
}
for (x=[-1,1]) // setscrews to secure base plate
translate([x*(CaseOverallWidth/2 - 3*Tap4_40),
TT3Offset,-Protrusion])
rotate(360/(5*4))
PolyCyl(Tap4_40,2*TopThick);
translate([-(ContactGapX/2 + ContactDia/2),0,(Contact1Y + ContactDia/2)])
rotate([90,0,0])
Contact();
translate([+(ContactGapX/2 + ContactDia/2),0,(Contact2Y + ContactDia/2)])
rotate([90,0,0])
Contact();
translate([CaseOverallWidth/2,HTCableOffset,(Length - HTCableDia/4)])
rotate([0,90,0])
cube([(HTCableDia/2 + Protrusion),HTCableDia,CaseOverallWidth],center=true);
translate([0,HTCableOffset,(Length - HTCableDia/2)])
rotate([0,90,0])
cylinder(r=(1/cos(30))*HTCableDia/2,h=CaseOverallWidth,$fn=6);
}
}
if (false)
if (Holes)
translate(LEDOffset) // support plug in LED window
rotate([90,90,0])
translate([-0.95*LEDWindow[0]/2,-0.80*LEDWindow[1]/2,ThreadWidth/2])
cube([0.95*LEDWindow[0],0.80*LEDWindow[1],2*ThreadWidth],center=false);
}
}
//-----
// Battery contact recess
// This gets subtracted from the bottom plate in two places
// Align points to print upward
module Contact() {
if (true)
union() { // vertical printing with case
translate([0,0,-(ContactRecess + Protrusion)/2])
PolyCyl(ContactDia,(ContactRecess + Protrusion),8);
translate([0,0,-(PlateThick + Protrusion)])
rotate(60/2)
PolyCyl(ContactStudDia,PlateThick,6);
translate([0,0,-(ContactRecess + ContactStudHeadThick/3)])
PolyCyl(ContactStudHead,ContactStudHeadThick,8); // allow for solder blob
}
else
union() { // horizontal printing alone
translate([0,0,-(ContactRecess - Protrusion)/2])
PolyCyl(ContactDia,(ContactRecess + Protrusion),8);
translate([0,0,-(PlateThick + Protrusion)])
PolyCyl(ContactStudDia,(PlateThick + 2*Protrusion));
translate([0,0,-(ContactRecess + ContactStudHeadThick/3)])
PolyCyl(ContactStudHead,ContactStudHeadThick,8); // allow for solder blob
}
}
//-----
// Radio bottom locating feature
// This polygon gets subtracted from the battery pack base
module RadioBase() {
linear_extrude(height=(BaseOpeningDepth + Protrusion),center=false,convexity=5)
polygon(points=[
[-BaseOpeningMax/2,-Protrusion],
[-BaseOpeningMin/2,BaseOpeningY],
[-(BaseToothOC/2 + BaseToothBase/2),BaseOpeningY],
[-(BaseToothOC/2 + BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
[-(BaseToothOC/2 - BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
[-(BaseToothOC/2 - BaseToothBase/2),BaseOpeningY],
[ (BaseToothOC/2 - BaseToothBase/2),BaseOpeningY],
[ (BaseToothOC/2 - BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
[ (BaseToothOC/2 + BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
[ (BaseToothOC/2 + BaseToothBase/2),BaseOpeningY],
[ BaseOpeningMin/2,BaseOpeningY],
[ BaseOpeningMax/2,-Protrusion],
[ (BaseTabOC + BaseTabWidth/2),-Protrusion],
[ (BaseTabOC + BaseTabWidth/2),BaseTabThick],
[ (BaseTabOC - BaseTabWidth/2),BaseTabThick],
[ (BaseTabOC - BaseTabWidth/2),-Protrusion],
[ BaseTabWidth/2,-Protrusion],
[ BaseTabWidth/2,BaseTabThick],
[-BaseTabWidth/2,BaseTabThick],
[-BaseTabWidth/2,-Protrusion],
[-(BaseTabOC + BaseTabWidth/2),-Protrusion],
[-(BaseTabOC + BaseTabWidth/2),BaseTabThick],
[-(BaseTabOC - BaseTabWidth/2),BaseTabThick],
[-(BaseTabOC - BaseTabWidth/2),-Protrusion],
],
convexity=5
);
}
//-----
// Battery pack base
module Base() {
difference() {
rotate([-90,180,0]) // main case shape
CaseShell(BaseTotalThick,false);
translate([0,0,BaseThick]) // radio base interface
RadioBase();
translate([0,0,BaseThick]) // tooth bevel
rotate([(-90 + BaseToothAngle),0,0])
translate([0,-0.5,0])
cube([(BaseToothSection + 2*Protrusion),1.0,10],center=true);
translate([-BaseWidthOuter, // surface slope
-(BaseThick + BaseEndLip)/tan(BaseEndAngle),0])
rotate([BaseEndAngle,0,0])
difference() {
cube([2*BaseWidthOuter,3*BaseOpeningY,BaseOpeningDepth],center=false);
translate([(BaseWidthOuter - (BaseToothSection + 2*Protrusion)/2),0,0])
cube([(BaseToothSection + 2*Protrusion),1.2*BaseOpeningY,BaseOpeningDepth],center=false);
}
for (x=[-1,1]) // alignment pin holes
translate([x*(CaseOverallWidth/2 - PinOffsetWidth),PinOffsetHeight,-Protrusion])
rotate(45) // align hole side with plate side
PolyCyl(PinDia,2*TopThick);
for (x=[-1,1]) // mounting setscews
translate([x*(CaseOverallWidth/2 - 3*Tap4_40),
TT3Offset,-Protrusion])
rotate(-360/(-5*4))
PolyCyl(Tap4_40,2*TopThick);
translate([(-SwitchBody[0]/2),TT3Offset,-SwitchBody[2]/2]) // mode switch
scale([1,1,2])
cube(SwitchBody);
}
}
//-----
// Top plate with latch
// Split around TinyTrak3 serial connector
// ... which must be at the same height as in the shell!
// The cable hole sizes & locations are entirely ad-hoc
module TopPlate() {
Cable1Dia = 5.0;
Cable2Dia = 5.0;
CableHoleLength = TopThick + 2*Protrusion;
CableHoleZ = -Protrusion;
DB9Plate = [32.0,13.5,1.25]; // plate surrounding connector body
difference() {
rotate([-90,180,180])
CaseShell(TopThick,false);
translate([0,-TT3Offset,-Protrusion])
DSubMin9(TopThick + 2*Protrusion);
translate([0,-TT3Offset,(TopThick - DB9Plate[2]/2)])
cube([DB9Plate[0],DB9Plate[1],(DB9Plate[2] + Protrusion)],center=true);
translate([-CaseOverallWidth,-SplitOffset,-2*Protrusion]) // split the plate
cube([2*CaseOverallWidth,4*Protrusion,(TopThick + 2*Protrusion)]);
translate([0,0,(TopThick - TopBevel)])
rotate([-TopBevelAngle,0,0])
translate([-CaseOverallWidth,-TopThick,0])
cube([2*CaseOverallWidth,2*TopThick,2*TopThick],center=false);
for (x=[-1,1])
translate([(x*TabOC/2),
(-TabHeight/2 + Protrusion),
(TopThick - TabEngageLength/2 + Protrusion/2)])
rotate([90,0,0])
cube([TabWidth,
(TabEngageLength + Protrusion),
(TabHeight + Protrusion)],center=true);
translate([-CaseOverallWidth,
-(TabEngageHeight + LatchBarWidth - BatteryClearance),
(TopThick - LatchBarDepth)])
cube([2*CaseOverallWidth,(LatchBarWidth + LatchBarThick),(LatchBarDepth + Protrusion)]);
for (x=[-1,1])
translate([(x*CaseOverallWidth/4),
-(TabEngageHeight + LatchBarWidth + Clear2_56/2 - BatteryClearance + Protrusion),
0]) {
translate([0,0,-Protrusion])
rotate(45) // align sides with slot
PolyCyl(Tap2_56,(TopThick + 2*Protrusion));
translate([0,0,(TopThick - LatchBarDepth)])
rotate(60) // align sides with slot
PolyCyl((Head2_56 + Protrusion),TopThick,6); // extra extra clearance
}
for (x=[-1,1])
translate([x*(CaseOverallWidth/2 - PinOffsetWidth),-PinOffsetHeight,-Protrusion])
rotate(45) // align hole side with plate side
PolyCyl(PinDia,2*TopThick);
for (x=[-1,1]) // coincidentally line up with latch tabs
translate([(x*TabOC/2),-(SplitOffset - 3.0),-Protrusion])
scale([1,1.7,1])
PolyCyl(Cable1Dia,CableHoleLength,6);
}
}
//-----
// Speaker-Mic plug mounting plate
module PlugPlate() {
JackOC = 11.20; // 14.25 OD - (3.58 + 2.58)/2
JackScrewDia = 4.6;
JackScrewOffsetX = 1.00;
JackScrewOffsetY = 5.25; // mounting screw to edge of lower recess
PlugBaseWidth = 9.25; // lower section of plate
PlugBaseLength = 22.0;
PlugBaseRadius = 1.75;
Plug3Offset = 5.25; // edge of base recess to 3.5 mm jack
Plug2BezelDia = 7.1; // 2.5 mm plug
Plug2BezelThick = 1.04;
Plug2ScrewDia = 6.0;
Plug3ScrewLength = 3.0;
Plug3BezelDia = 8.13; // 3.5 mm plug
Plug3BezelThick = 1.6;
Plug3ScrewDia = 7.95;
Plug3ScrewLength = 4.0;
PlugFillOffsetX = JackScrewOffsetX - 0.5; // base recess CL to fill CL
PlugFillOffsetY = -10.5; // ... to edge of fill plate
PlugFillWidth = 11.0;
PlugFillLength = 34.00;
PlugFillRadius1 = 1.5;
PlugFillRadius2 = 4.5;
PlugFillOffsetYTotal = 0;
BaseX = PlugBaseWidth/2 - PlugBaseRadius;
BaseY = PlugBaseLength/2 - PlugBaseRadius;
difference() {
union() {
linear_extrude(height=PlugBaseThick,center=false,convexity=3)
hull() {
translate([-BaseX,-BaseY,0])
circle(r=PlugBaseRadius,$fn=8);
translate([-BaseX, BaseY,0])
circle(r=PlugBaseRadius,$fn=8);
translate([ BaseX, BaseY,0])
circle(r=PlugBaseRadius,$fn=8);
translate([ BaseX,-BaseY,0])
circle(r=PlugBaseRadius,$fn=8);
}
translate([PlugFillOffsetX,
(PlugFillLength/2 - PlugBaseLength/2 + PlugFillOffsetY),
PlugBaseThick])
linear_extrude(height=PlugFillThick,center=false,convexity=5)
hull() {
translate([0,-(PlugFillLength/2 - PlugFillRadius2),0])
circle(r=PlugFillRadius2,$fn=10);
translate([-(PlugFillWidth/2 - PlugFillRadius1),-PlugBaseLength/2,0])
circle(r=PlugFillRadius1,$fn=8);
translate([-(PlugFillWidth/2 - PlugFillRadius1),
(PlugFillLength/2 - PlugFillRadius1),0])
circle(r=PlugFillRadius1,$fn=8);
translate([(PlugFillWidth/2 - PlugFillRadius1),
(PlugFillLength/2 - PlugFillRadius1),0])
circle(r=PlugFillRadius1,$fn=8);
translate([(PlugFillWidth/2 - PlugFillRadius1),-PlugBaseLength/2,0])
circle(r=PlugFillRadius1,$fn=8);
}
}
translate([0,-JackOC/2,-Protrusion])
rotate(360/16) {
PolyCyl(Plug3BezelDia,(Plug3BezelThick + Protrusion),8);
PolyCyl(Plug3ScrewDia,(PlugBaseThick + PlugFillThick + 2*Protrusion),8);
}
translate([0,+JackOC/2,-Protrusion])
rotate(360/16) {
PolyCyl(Plug2BezelDia,(Plug2BezelThick + Protrusion),8);
PolyCyl(Plug2ScrewDia,(PlugBaseThick + PlugFillThick + 2*Protrusion),8);
}
translate([JackScrewOffsetX,-(PlugBaseLength/2 + JackScrewOffsetY),0])
PolyCyl(JackScrewDia,(PlugBaseThick + PlugFillThick + Protrusion));
}
}
//-------------------
// Build things...
ShowPegGrid();
if (Layout == "TT3")
TinyTrak3();
if (Layout == "Audio")
AudioInterface();
if (Layout == "DSub")
DSubMin9();
if (Layout == "Shell")
CaseShell(CaseOverallLength);
if (Layout == "Top")
TopPlate();
if (Layout == "Base")
Base();
if (Layout == "RadioBase")
RadioBase();
if (Layout == "PlugPlate")
PlugPlate();
if (Layout == "Contact")
rotate([180,0,0])
Contact();
if (Layout == "Show" || Layout == "Fit") {
translate([0,-ShellLength/2,0]) {
translate([0,(Layout == "Show")?-ShowGap:0,0])
rotate([90,0,0])
color("SandyBrown") Base();
translate([0,0,0])
color("LightGreen") render() CaseShell();
translate([-(CaseOverallWidth/2 + 10),50,CaseOverallHeight/2])
rotate([0,-90,0])
color("Gold") PlugPlate();
translate([0,((Layout == "Show")?(ShellLength + ShowGap):ShellLength),0])
rotate([-90,0,0])
color("BurlyWood") TopPlate();
}
}
if (Layout == "Build1") {
translate([5 + CaseOverallHeight,0,0])
rotate([0,0,90])
Base();
translate([-(5 + CaseOverallHeight),0,0])
rotate(90)
TopPlate();
}
if (Layout == "Build2") {
translate([0,-CaseOverallHeight/2,ShellLength])
rotate([-90,0,0])
CaseShell();
}
if (Layout == "Build3") {
translate([0,0,(PlugBaseThick + PlugFillThick)])
rotate([180,0,0])
PlugPlate();
}
DIY 3D printing seems surrounded by Good Ideas that don’t happen, which led me to look up some of the early patents in the field. As nearly as I can tell, any bright idea one might have has already been patented; although you can usually get away with tinkering it up in your basement (because you’re not worth enough to interest the patent holder’s attorneys), anything beyond that will darken your skies with lawsuits.
The granddaddy of all 3D extrusion machines seems to be US5121329 (Crump → Stratasys 1992-06-09): Apparatus and method for creating three-dimensional objects
Exploring the patents referencing that one as a foundation should keep you busy for a while; the PDF has clicky links.
Some fine tuning on the theme:
US6085957 (Zinniel/Batchelder → Stratasys): Volumetric feed control for flexible filament
US5303141 (Batchelder/et al → IBM): Model generation system having closed-loop extrusion nozzle positioning
Congealing 3D objects in a vat of goo probably starts with 4575330 (Hull → MVP 1986-03-11): Apparatus for production of three-dimensional objects by stereolithography
Remember: I’m not a patent attorney and my opinion is worthless…