Seedling Shelter Frame Deployment

Mary bound up a mesh cover for the shelter frame and deployed it to protect some yummy seedlings:

Seedling Mesh Shelter - installed
Seedling Mesh Shelter – installed

Those will become the next round of lunchtime sandwiches:

Turkey Sandwich with Excessive Lettuce
Turkey Sandwich with Excessive Lettuce

It’s a quarter-pounder: 4 oz of turkey, 4 oz of lettuce, and a layer of Swiss and good stinky Provolone cheese. Yum!

Vacuum Tube Lights: Urethane Coated Plate Cap

With a generous dollop of JB Plastic Bonder left over from a set of Bafang brake sensor magnets, I tried coating the ersatz plate cap of a triode tube:

Triode - urethane coated plate cap
Triode – urethane coated plate cap

That’s the result after leaving it hanging upside-down while it cured to push all the drips to the top.

For comparison, the uncoated cap back in the day:

Triode - plate cap plug
Triode – plate cap plug

Seeing as how the urethane is an adhesive, not a coating, I’d say it looks about as bad as expected.

As with all 3D printed things, one must embrace imperfections and striations, rather than endlessly strive for perfection.

Now, if I had a resin printer …

Tour Easy: Amber Running Light

Having seen a few bikes with amber “headlights” and being desirous of reducing the number of batteries on Mary’s bike, this seems like an obvious first step:

Fairing Mounted Side Marker - First Light
Fairing Mounted Side Marker – First Light

It descends from the fairing flashlight mount with an entry to suit a 15 mm truck side marker body:

LightBodies = [
  ["AnkerLC90",26.6,48.0],
  ["AnkerLC40",26.6,55.0],
  ["J5TactV2",25.0,30.0],
  ["InnovaX5",22.0,55.0],
  ["Sidemarker",15.0,20.0],
  ["Laser",10.0,30.0],
];

The rest of the code gets a few cleanups you’d expect when you compile code untouched for a few years using the latest OpenSCAD.

The markers are allegedly DOT rated, which matters not for my use case: SAEP2PCDOT.

The mount is grossly overqualified for a wide-beam light with little need for aiming:

Fairing Mounted Side Marker - test light
Fairing Mounted Side Marker – test light

Eventually, the marker should slip into a prealigned cylindrical holder, with a dab of epoxy to keep it there.

The lights are a buck apiece, so there’s no reason to form a deep emotional attachment. They are the usual poorly molded and badly assembled crap, although the next step up from a nominally reputable supplier is a factor of five more expensive.

It’s generated for the left side of the fairing, although I think having a pair of them would improve conspicuity:

Fairing Mounted Side Marker - installed
Fairing Mounted Side Marker – installed

Being automotive, it runs from a 12 V supply, which comes from a boost converter driven by the Bafang 6 V headlight output. The absurdity of bucking a 48 V lithium battery to a 6V switched headlight output, then boosting it to 12 V to drive a single amber LED with a 1.5 V forward drop does not escape me.

It’s possible to slice the lens off (using a lathe), remove / replace the resistor, then glue it back together, which would be worthwhile if you were intending to drive it from, say, an Arduino-ish microcontroller to get a unique blink pattern.

Given the overall lack of build quality, it might make more sense to slap a condenser lens in front of a Piranha LED.

Bonus: contrary to what you (well, I) might expect, the black lead is positive and the white lead is negative.

Bafang BBS02: Terry Symmetry Shift Sensor & Cable Guides

The Bafang BBS02 came with (because I added it to the order) what looks like a genuine shift (“gear”) sensor made by the original company in the Czech Republic:

Terry Bafang - shift sensor - installed
Terry Bafang – shift sensor – installed

On a typical bike, it mounts against a cable stop with the cable housing holding it in place against its other end:

Tour Easy Bafang BBS02 - shift sensor - installed
Tour Easy Bafang BBS02 – shift sensor – installed

The Terry Symmetry has only two lengths of housing: in front of the adjuster on the downtube and behind the stop brazed to the chainstay. In either position, the sensor would move as the shift cable flexed and (IMO) put unreasonable stress on the electrical cable running to the motor.

Yes, the Tour Easy has those same two lengths of housing, but the forward one joins a sheaf of wires & cables that barely moves.

Fortunately, the sensor fits neatly between stations 1 and 2 along the downtube, with a snippet of PTFE lIned housing holding it firmly in place, with the 3D printed battery mounting blocks including paths for both cables:

Terry - Bafang battery - all stations - solid model
Terry – Bafang battery – all stations – solid model

The shift cable originally ran from the adjuster in the front to the guide under the bottom bracket along a slightly diagonal path I could not possibly match. Instead, the path is now parallel to the downtube from the front adjuster:

Terry Bafang - OEM shift stop
Terry Bafang – OEM shift stop

.. to the rear block, where it angles downward over the motor to the bottom bracket:

Terry Bafang - shift cable clearance
Terry Bafang – shift cable clearance

The front block at station 1 has a Delrin / acetal bushing to align the cable with the rest of the blocks:

Terry shift guide - acetal installed
Terry shift guide – acetal installed

Yes, it’s a round peg jammed in a hexagonal hole:

Terry shift guide - acetal hole
Terry shift guide – acetal hole

Turning it from stock is well within the capabilities of Tiny Lathe™:

Terry shift guide - acetal cutoff
Terry shift guide – acetal cutoff

For great slippery, a similar UHMW PE bushing supports the cable bend at the rear of the station 4 block:

Terry shift guide - UHMWPE installed
Terry shift guide – UHMWPE installed

The Basement Laboratory Warehouse Wing disgorged an overly large rod taxing Tiny Lathe™ to its limit:

Terry shift guide - UHMWPE turning
Terry shift guide – UHMWPE turning

Memo to Self: next time, just saw off a stub and move on.

Bafang BBS02: Motor Reaction Spacer

The Terry Symmetry’s rear shift cable passes along the side of the downtube and through a plastic guide channel under the bottom bracket shell. The Bafang BBS02 motor must press against the bottom of the downtube, so the shift cable rubs against the top of the motor.

The solution is a small block shaped around the point of contact to cradle the downtube, the bottom bracket shell lug, and the motor case:

Terry - Bafang motor spacer - solid model
Terry – Bafang motor spacer – solid model

A strip of double-sided foam tape holds the block to the motor and the reaction force from the motor’s torque presses the block against the downtube:

Terry Bafang - motor reaction block
Terry Bafang – motor reaction block

Seen from the other side, looking parallel to the shift cable, you can see the tight clearance:

Terry Bafang - shift cable clearance
Terry Bafang – shift cable clearance

The block holds the motor 8 mm from the downtube, just enough to give the cable some breathing room.

The block is slightly taller on its front end, because the motor doesn’t meet the downtube at a right angle:

Terry - Bafang motor spacer - tube angle - solid model
Terry – Bafang motor spacer – tube angle – solid model

I determined the proper angle by taping waxed paper to the top of the motor, sticking a trial (non-angled) block to the downtube, coating its bottom surface with hot-melt glue, then squishing the motor against the block. The cooled glue was flush with the block on the rear and 1.8 mm thick on the front, a 5° angle over the 20 mm block.

Definitely easier than correctly figuring the geometry from first principles: tweak the model to include the measured thickness, compute the angle, tilt the tube, and print another block that fits like it grew there.

With the block in place and the motor held against the downtube, tighten the retaining nut against the “fixing plate” by giving it a few gentle whacks with a hammer, then tighten the jam nut.

The OpenSCAD source code snippet:

// Motor Reaction Block
// Holds motor away from downtube enough to miss rear shift wire

MotorOD = 111;              // motor frame dia
MotorMountRad = 85;         // BB spindle center to motor center
Space = 8.0;                // motor to frame space

Spacer = [20.0,DownTube[ID]/2,4*Space];
SpaceAngle = atan(1.8/Spacer.x);            // tilt due to non-right-angle meeting
echo(str("Spacer angle: ",SpaceAngle));

module MotorSpacer() {

    difference() {
        cube(Spacer,center=true);
        translate([0,0,DownTube[ID]/2])
            rotate([0,90 + SpaceAngle,0]) rotate(180/FrameSides)
                cylinder(d=DownTube[ID],h=DownTube[LENGTH],$fn=FrameSides,center=true);
        translate([DownTube[LENGTH]/2,0,DownTube[ID]/2 - DownTube[LENGTH]*sin(SpaceAngle)/2])       // concentric with ID
            rotate([0,90 + SpaceAngle,0]) rotate(180/FrameSides)
                cylinder(d=DownTube[OD],h=DownTube[LENGTH],$fn=FrameSides,center=true);
        translate([0,0,-(MotorOD/2 + Space)])
            rotate([90,0,0]) rotate(180/48)
                cylinder(d=MotorOD,h=2*Spacer.y,$fn=48,center=true);
    }

}

Mary’s Tour Easy didn’t need this block, because all the cables run elsewhere, but I did capture a piece of closed-cell foam between its vestigial downtube and the motor to prevent chafing.

Bafang BBS02: Terry Symmetry Battery Mount Tee Nuts

The two middle mounting blocks under the Bafang battery plate have 5 mm holes for the screws going into the water bottle studs brazed to the frame. The outer blocks clamp around the frame and it seemed like a good idea to secure the plate to them, as well:

Terry Bafang battery mount - trial installation
Terry Bafang battery mount – trial installation

Those two blocks have a recess for an M5 tee nut:

Terry - Bafang battery - station 2 - bottom view - solid model
Terry – Bafang battery – station 2 – bottom view – solid model

I snipped off the prongs with hardened diagonal cutters and filed the stubs to a uniform height:

Modified M5 tee nuts
Modified M5 tee nuts

Applying a hot soldering gun to the plate melted the stubs into the block:

Terry Bafang battery mount - tee nut in place
Terry Bafang battery mount – tee nut in place

An M5 screw with a wingnut atop a big washer kept the tee nut properly aligned while pulling it into the melty plastic; I was pleasantly surprised at the lack of drama.

A ring of JB Plastic Bonder urethane adhesive glued the nut to the block:

Terry Bafang battery mount - tee nut gluing
Terry Bafang battery mount – tee nut gluing

The adhesive starts out runny and flows under the nut, so there’s more surface in play than meets the eye.

Clamping the partially cured goo to the frame atop a layer of waxed paper squashes any protruding adhesive lumps flat and prevents them from marring the tube’s paint:

Terry Bafang battery mount - tee nut adhesive molding
Terry Bafang battery mount – tee nut adhesive molding

Anchoring the battery to the bike at four spots makes it utterly immovable, which seems like a good way to ensure longevity:

Bafang BBS02 - Terry Symmetry full assembly
Bafang BBS02 – Terry Symmetry full assembly

That’s a test assembly predating the cable management cleanup …

Bafang BBS02: Terry Symmetry Battery Mount

The Bafang 48 V 11.6 A·h battery for Gee’s Terry Symmetry mounts on the downtube:

Bafang BBS02 - Terry Symmetry full assembly
Bafang BBS02 – Terry Symmetry full assembly

The battery slides onto a plate screwed to the pair of water bottle studs brazed to the tube:

Terry Bafang battery mount plate - test install
Terry Bafang battery mount plate – test install

Water bottle studs are (nominally) 65 mm on center. One stud normally appears under the plate’s center hole, with the other stud under either the upper or lower slot, depending on whether the battery fits better mounted lower or higher on the downtube.

However, the Symmetry’s downtube is so short the plate must mount with the lowest slot matching the uppermost stud, putting the lower stud beneath the metal compartment with its complete lack of mounting holes.

Well, I can fix that:

Terry Bafang battery mount - internal modifications
Terry Bafang battery mount – internal modifications

The upper hole in the metal base is 65 mm from the middle of the lower slot in the plastic baseplate, which will be (approximately) centered on the upper stud inside the black plastic mount. The location of that hole is not a free variable: it requires measuring and marking from the slot with the battery plate assembled.

The lower hole in the base puts the bottom of its plastic mount just about even with the end of the plate.

I shortened the battery side of the cable, crimped on (genuine!) 45 A Powerpole pins, and shaped the wiring to put the connector inside the metal compartment, out of harm’s way, and shielded from the weather.

The small bar of white HDPE serves as a cable clamp, held by a pair of M3 BHCS in the conveniently tapped holes.

With all that settled, the final iteration of the 3D printed mounting blocks took shape:

Terry - Bafang battery - all stations - solid model
Terry – Bafang battery – all stations – solid model

A station number from 1 through 4 identifies the blocks (station 0 is the blank block shape) and, of course, they’re all different. I refactored the OpenSCAD code used for Mary’s Tour Easy to put the feature selection into vectors, rather than convoluted logic:

Latches = [false,true,true,false,false];                // clearance for battery latch clips
Notch = [false,true,true,false,false];                  // notch for battery screw pockets
Recess = ["None","TeeNut","Bottle","Bottle","TeeNut"];  // stud or nut clearance against frame

HarnessCable = [false,true,true,true,true];             // passage for main harness cable

ShiftWire = [false,true,true,true,true];                //  .. shifter wire through sensor
Ferrules = ["None","Both","Front","None","Back"];       // ferrule and bushing ssockets

GearCable = [false,false,true,true,true];               //  .. gear sensor cable

Producing the features for a specific block is now a straightforward series of obvious choices. For example, adding the channels to clear the battery latches at stations 1 and 2 looks like this:

        if (Latches[BlkNum])
            for (i=[-1,1])
                translate([0,i*LatchOC/2,BlockMaxZ - LatchThick/2 + Protrusion])
                    cube([BossSlotOAL,LatchWidth,LatchThick + Protrusion],center=true);

Both parts of the block show the station number to avoid mixups:

Terry - Bafang battery - station 2 - solid model
Terry – Bafang battery – station 2 – solid model

Each block requires a bit under three hours of printing time, so they’re produced singly:

Terry - Bafang battery - station 2 build - solid model
Terry – Bafang battery – station 2 build – solid model

Building them sideways produces the best surface finish in all the recesses and holes. Small support structures under the rounded corners make them look Good Enough™ for their purpose.

A test assembly:

Terry Bafang battery mount - trial installation
Terry Bafang battery mount – trial installation

The two middle blocks (stations 3 and 2) sit at the water bottle studs. The rightmost block (station 1) is 130 mm from station 2, with the Bafang gear sensor on the rear derailleur cable.

An aluminum plate spreads the clamping force from the M4 screws across the bottom, as seen here below the cable stop cap holding the harness cable:

Terry Bafang - shift stop cap
Terry Bafang – shift stop cap

Those 50 mm screws are too long; a soon-to-arrive bag of 45 mm screws should fit perfectly. The final assembly will use nyloc nuts so they won’t vibrate loose.

The OpenSCAD source code for all the pieces as a GitHub Gist:

// Terry Symmetry - Bafang e-bike conversion
// Ed Nisley KE4ZNU 2021-06
Layout = "BuildClip"; // [Frame,Block,AllBlocks,BuildBlock,DispMount,BrakeMagnet,ShiftCap,BuildShiftCap,Case,NutMold,HeadClip, BuildClip]
Station = 4; // [0:4]
Support = false;
//- Extrusion parameters must match reality!
/* [Hidden] */
ThreadThick = 0.25;
ThreadWidth = 0.40;
HoleWindage = 0.2;
Protrusion = 0.1; // make holes end cleanly
inch = 25.4;
function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
ID = 0;
OD = 1;
LENGTH = 2;
//----------
// Dimensions
// Bike frame lies along X axis, rear to +X
FrameTube = [400,28.9 + HoleWindage,28.9 + HoleWindage]; // X = longer than anything else
FrameSides = 24;
SpeedOD = 3.5; // speed sensor cable
PowerOD = 6.7; // power cable
Harness = [6.0,13.0,30.0]; // main motor-to-handlebar cable
GearOD = 3.0; // gear sensor cable
HandlebarMax = 1*inch; // middle handlebar diameter
HandlebarMin = 24.0; // .. tape section
HeadTube = [32.0,35.0,8.0]; // ID=tube OD=lug LENGTH=clear between lugs
BottleStud = [5.0,10.0,IntegerMultiple(1.2,ThreadThick)]; // frame fitting for bottle screws
BafangClampID = 22.3; // their handlebar clamp diameter
ShiftOD = 2.0; // rear shifter cable
ShiftFerrule = [ShiftOD,6.0,10.0];
ShiftOffset = 7.5; // .. from downtube
ShiftAngle = -20; // .. from midline
BatteryBoss = [5.5,16.0,2.5]; // battery mount boss, center boss is round
BossSlotOAL = 32.0; // .. end bosses are elongated
BossOC = 65.0; // .. along length of mount
LatchWidth = 10.0; // battery latches to mount plate
LatchThick = 1.5;
LatchOC = 56.0;
// Per-block features
// first element is unadorned block
Latches = [false,true,true,false,false]; // clearance for battery latch clips
Notch = [false,true,true,false,false]; // notch for battery screw pockets
Recess = ["None","TeeNut","Bottle","Bottle","TeeNut"]; // stud or nut clearance against frame
HarnessCable = [false,true,true,true,true]; // passage for main harness cable
ShiftWire = [false,true,true,true,true]; // .. shifter wire through sensor
Ferrules = ["None","Both","Front","None","Back"]; // ferrule and bushing ssockets
GearCable = [false,false,true,true,true]; // .. gear sensor cable
// M3 SHCS nyloc nut
Screw3 = [3.0,5.5,35.0]; // OD, LENGTH = head
Washer3 = [3.7,7.0,0.7];
Nut3 = [3.0,6.0,4.0];
// M4 SHCS nyloc nut
Screw4 = [4.0,7.0,4.0]; // OD, LENGTH = head
Washer4 = [4.2,8.9,1.0];
Nut4 = [4.0,7.8,5.0];
// M5 SHCS nyloc nut
Screw5 = [5.0,8.5,5.0]; // OD, LENGTH = head
Washer5 = [5.5,10.1,1.0];
Nut5 = [5.0,9.0,5.0];
Teenut5 = [6.5,17.0,8.0,2.0]; // OD, LENGTH+1 = flange
// 10-32 Philips nyloc nut
Screw10 = [5.2,9.8,3.6]; // OD, LENGTH = head
Washer10 = [5.5,11.0,1.0];
Nut10 = [5.2,10.7,6.2];
CableTie = [150,5.0,2.0];
WallThick = 4.0; // thinnest wall
BlockMinZ = -(FrameTube.z/2 + WallThick);
BlockMaxZ = FrameTube.z/2 + max(WallThick,Teenut5[LENGTH]) + BatteryBoss[LENGTH];
Block = [25.0,78.0,BlockMaxZ - BlockMinZ]; // Y = battery width
echo(str("Block: ",Block));
Kerf = 0.5; // cut through middle to apply compression
CornerRadius = 5.0;
EmbossDepth = 2*ThreadThick; // lettering depth
//----------------------
// Useful routines
module PolyCyl(Dia,Height,ForceSides=0) { // based on nophead's polyholes
Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
FixDia = Dia / cos(180/Sides);
cylinder(d=(FixDia + HoleWindage),h=Height,$fn=Sides);
}
// frame downtube
module Frame() {
rotate([0,90,0]) rotate(180/FrameSides)
cylinder(d=FrameTube.z,h=FrameTube.x,center=true,$fn=FrameSides);
}
// clamp overall shape
module ClampBlock(BlkNum = 1) {
Screw = Screw4;
Washer = Washer4;
Nut = Nut4;
ScrewOC = LatchOC;
ScrewSides = 8;
ScrewOrient = 180/ScrewSides;
ScrewRecess = LatchThick + Screw[LENGTH] + Washer[LENGTH] + 1.0;
echo(str("Screw length: ",Block.z - ScrewRecess));
difference() {
hull()
for (i=[-1,1], j=[-1,1])
translate([i*(Block.x/2 - CornerRadius),j*(Block.y/2 - CornerRadius),BlockMinZ])
cylinder(r=CornerRadius,h=Block.z,$fn=4*3);
cube([2*Block.x,2*Block.y,Kerf],center=true);
Frame();
for (j=[-1,1]) {
translate([0,j*ScrewOC/2,BlockMinZ - Protrusion])
rotate(ScrewOrient)
PolyCyl(Screw[ID],2*Block.z,ScrewSides);
translate([0,j*ScrewOC/2,BlockMaxZ - ScrewRecess])
rotate(ScrewOrient)
PolyCyl(Washer[OD],BlockMaxZ,ScrewSides);
}
if (Latches[BlkNum])
for (i=[-1,1])
translate([0,i*LatchOC/2,BlockMaxZ - LatchThick/2 + Protrusion])
cube([BossSlotOAL,LatchWidth,LatchThick + Protrusion],center=true);
if (Notch[BlkNum])
translate([0,0,BlockMaxZ - BatteryBoss[LENGTH]/2 + Protrusion])
cube([BossSlotOAL,BatteryBoss[OD],BatteryBoss[LENGTH] + Protrusion],center=true);
if (HarnessCable[BlkNum])
rotate([-155,0,0]) {
translate([0,FrameTube.y/2 - Harness[ID]/2,0])
cube([2*Block.x,2*Harness[ID],Harness[ID]],center=true);
translate([0,FrameTube.y/2 + Harness[ID]/2,0])
rotate([0,90,0])
translate([0,0,-Block.x])
rotate(180/6)
PolyCyl(Harness[ID],2*Block.x,6);
}
if (GearCable[BlkNum])
rotate([-45,0,0]) {
translate([0,FrameTube.y/2 - GearOD/2,0])
cube([2*Block.x,2*GearOD,GearOD],center=true);
translate([0,FrameTube.y/2 + GearOD/2,0])
rotate([0,90,0])
translate([0,0,-Block.x])
rotate(180/6)
PolyCyl(GearOD,2*Block.x,6);
}
rotate([ShiftAngle,0,0]) {
if (ShiftWire[BlkNum])
translate([-Block.x,FrameTube.y/2 + ShiftOffset,0])
rotate([0,90,0]) rotate(-(90 + ShiftAngle))
PolyCyl(ShiftOD,2*Block.x,6);
if (Ferrules[BlkNum] == "Back" || Ferrules[BlkNum] == "Both") {
i = 1;
translate([i*(Block.x/2 - ShiftFerrule[LENGTH]),FrameTube.y/2 + ShiftOffset,0])
rotate([0,i*90,0]) rotate(-i*(90 + ShiftAngle))
PolyCyl(ShiftFerrule[OD],Block.x,6);
}
if (Ferrules[BlkNum] == "Front" || Ferrules[BlkNum] == "Both") {
i = -1;
translate([i*(Block.x/2 - ShiftFerrule[LENGTH]),FrameTube.y/2 + ShiftOffset,0])
rotate([0,i*90,0]) rotate(-i*(90 + ShiftAngle))
PolyCyl(ShiftFerrule[OD],Block.x,6);
}
}
if (Recess[BlkNum] == "Bottle") {
rotate(ScrewOrient) {
PolyCyl(BottleStud[ID],2*Block.z,ScrewSides);
PolyCyl(BottleStud[OD],FrameTube.z/2 + BottleStud[LENGTH],ScrewSides);
}
}
else if (Recess[BlkNum] == "TeeNut") {
rotate(ScrewOrient) {
PolyCyl(Teenut5[ID],2*Block.z,ScrewSides);
PolyCyl(Teenut5[OD],FrameTube.z/2 + Teenut5[LENGTH+1],ScrewSides);
}
}
translate([0,15,BlockMaxZ - EmbossDepth/2 + Protrusion])
cube([9.0,8,EmbossDepth],center=true);
translate([0,17,BlockMinZ + EmbossDepth/2 - Protrusion])
cube([9.0,8,EmbossDepth],center=true);
translate([0,-5,BlockMinZ + EmbossDepth/2 - Protrusion])
cube([9.0,30,EmbossDepth],center=true);
}
translate([0,15,BlockMaxZ - EmbossDepth])
linear_extrude(height=EmbossDepth)
rotate(90)
text(text=str(BlkNum),size=5,spacing=1.00,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
translate([0,17,BlockMinZ])
linear_extrude(height=EmbossDepth)
rotate(-90) mirror([0,1,0])
text(text=str(BlkNum),size=4.5,spacing=1.00,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
translate([0,-5,BlockMinZ])
linear_extrude(height=EmbossDepth)
rotate(-90) mirror([0,1,0])
text(text="KE4ZNU",size=4.5,spacing=1.00,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
}
// complete clamp block
module Clamp(BlkNum = 1) {
ClampBlock(BlkNum);
if (Support)
color("Yellow") {
NumRibs = 7;
RibOC = Block.x/(NumRibs - 1);
intersection() {
translate([0,0,BlockMaxZ + Kerf/2])
cube([2*Block.x,2*Block.y,Block.z],center=true);
union() {
translate([0,0,Kerf/2])
cube([1.1*Block.x,FrameTube.y - 2*ThreadThick,4*ThreadThick],center=true);
for (i=[-floor(NumRibs/2):floor(NumRibs/2)])
translate([i*RibOC,0,0])
rotate([0,90,0]) rotate(180/FrameSides)
cylinder(d=FrameTube.z - 2*ThreadThick,h=2*ThreadWidth,$fn=FrameSides,center=true);
/*
translate([0,FrameTube.y/2 + PowerOD/2,Kerf/2])
cube([1.1*Block.x,PowerOD - 2*ThreadWidth,4*ThreadThick],center=true);
for (i=[-floor(NumRibs/2):floor(NumRibs/2)])
translate([i*RibOC,FrameTube.y/2 + PowerOD/2,PowerOD/4])
cube([2*ThreadWidth,PowerOD - 2*ThreadWidth,PowerOD/2 - 2*ThreadThick],center=true);
translate([0,-(FrameTube.y/2 + SpeedOD/2),Kerf/2])
cube([1.1*Block.x,SpeedOD - 2*ThreadWidth,4*ThreadThick],center=true);
for (i=[-floor(NumRibs/2):floor(NumRibs/2)])
translate([i*RibOC,-(FrameTube.y/2 + SpeedOD/2),SpeedOD/4])
cube([2*ThreadWidth,SpeedOD - 2*ThreadWidth,SpeedOD/2 - 2*ThreadThick],center=true);
*/
}
}
}
}
// Half clamp sections for printing
module HalfClamp(BlkNum = 1, Section = "Upper") {
render()
if (Section == "Upper")
intersection() {
translate([0,0,BlockMaxZ/2])
cube([1.1*Block.x,Block.y,BlockMaxZ],center=true);
translate([0,0,-Kerf/2])
Clamp(BlkNum);
}
else
intersection() {
translate([0,0,-BlockMinZ/2])
cube([1.1*Block.x,Block.y,-BlockMinZ],center=true);
translate([0,0,-BlockMinZ])
Clamp(BlkNum);
}
}
// Handlebar mount for controller
module DispMount() {
ClampRing = [HandlebarMax,HandlebarMax + 2*WallThick,10.0];
ClampOffset = (HandlebarMax + BafangClampID)/2 + 6.0;
DispStudLenth = 16.5;
NumSides = 24;
Tilt = 0*atan2((ClampRing[OD] - BafangClampID)/2,ClampOffset);
echo(str("Tilt: ",Tilt));
difference() {
union() {
hull() {
cylinder(d=ClampRing[OD],h=ClampRing[LENGTH],$fn=NumSides);
translate([0,ClampOffset,0])
cylinder(d=BafangClampID,h=ClampRing[LENGTH],$fn=NumSides);
}
translate([0,ClampOffset,0])
cylinder(d=BafangClampID,h=ClampRing[LENGTH] + DispStudLenth,$fn=NumSides);
translate([-ClampRing[ID]/4,-(ClampRing[OD]/2),ClampRing[LENGTH]/2])
rotate([0,90,0]) rotate(180/8)
cylinder(d=ClampRing[LENGTH]/cos(180/8),h=ClampRing[ID]/2,$fn=8);
}
cube([Kerf,4*ClampOffset,4*DispStudLenth],center=true);
translate([0,0,-Protrusion])
cylinder(d=ClampRing[ID],h=ClampRing[LENGTH] + 2*Protrusion,$fn=NumSides);
translate([-ClampRing[ID]/2,-(ClampRing[OD]/2),ClampRing[LENGTH]/2])
rotate([0,90,0]) rotate(180/8)
PolyCyl(Screw3[ID],ClampRing[ID],8);
for (i=[-1,1])
translate([i*ClampRing[ID]/4,-(ClampRing[OD]/2),ClampRing[LENGTH]/2])
rotate([0,i*90,0]) rotate(180/8)
PolyCyl(Washer3[OD],ClampRing[ID],$fn=8);
translate([-5,25,EmbossDepth/2 - Protrusion/2])
rotate(Tilt)
cube([4.5,21.5,EmbossDepth + Protrusion],center=true);
if (false)
translate([-6,25,EmbossDepth/2 - Protrusion/2])
rotate(-Tilt)
cube([4.0,27,EmbossDepth + Protrusion],center=true);
}
translate([-5,25,0])
linear_extrude(height=EmbossDepth)
rotate(90 + Tilt) mirror([0,1,0])
text(text="KE4ZNU",size=3.3,spacing=1.05,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
if (false)
translate([-6,25,0])
linear_extrude(height=EmbossDepth)
rotate(90 - Tilt) mirror([0,1,0])
text(text="softsolder.com",size=2.2,spacing=1.05,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
}
// Mold to reshape speed sensor nut
SensorNut = [0,14.4,13.0];
SensorMold = [SensorNut[OD] + 2*WallThick,SensorNut[OD] + 2*WallThick,SensorNut[LENGTH] + WallThick];
MoldSides = 20;
RodOD = 1.6;
module NutMoldBlock() {
difference() {
translate([0,0,SensorMold.z/2])
cube(SensorMold,center=true);
translate([0,0,WallThick])
rotate(180/MoldSides)
PolyCyl(SensorNut[OD],2*SensorNut[LENGTH],MoldSides);
translate([0,0,-Protrusion])
rotate(180/8)
PolyCyl(SpeedOD,2*SensorMold.z,8);
for (i=[-1,1])
translate([i*(SensorMold.x/2 - WallThick/2),SensorMold.y,SensorMold.z/2])
rotate([90,0,0])
PolyCyl(RodOD,2*SensorMold.y,6);
}
}
module NutMold() {
gap = 1.0;
for (j=[-1,1])
translate([0,j*gap,0])
intersection() {
translate([0,j*SensorMold.y,0])
cube(2*SensorMold,center=true);
NutMoldBlock();
}
}
// Brake sensor magnet mount
// Magnetized through thinnest section
module BrakeMagnet() {
Magnet = [10.5,3.0,5.5];
Plate = 2*ThreadThick;
BrakeRad = 10.0; // brake handle curve Radius
Holder = [2*BrakeRad,7.0,Magnet.z + Plate];
difference() {
intersection() {
translate([0,-BrakeRad,0])
rotate(180/24)
cylinder(r=BrakeRad,h=Holder.z,$fn=24);
translate([0,BrakeRad - Holder.y,Holder.z/2])
cube([2*BrakeRad,2*BrakeRad,Holder.z],center=true);
translate([0,0,-2*BrakeRad/sqrt(2) + Holder.z - 3.0 + BrakeRad])
rotate([0,45,0])
cube(2*[BrakeRad,2*BrakeRad,BrakeRad],center=true);
}
translate([0,Magnet.y/2 - Holder.y - Protrusion/2,Magnet.z/2 + Plate + Protrusion/2])
cube(Magnet + [0,Protrusion,Protrusion],center=true);
}
}
// Shift stud cap
// With passage for harness cable
CapBlock = [18,18,16.5];
module ShiftCap() {
Rounding = 3.5;
CapM = 3.0;
StudBase = [12.5,12.5,4.5];
Stud = [5.0,9.3,15.5];
difference() {
hull() {
translate([0,0,CapBlock.z - 0.5])
PolyCyl(Washer5[OD],0.5,12);
for (i=[-1,1], j=[-1,1])
translate([i*(CapBlock.x/2 - Rounding),j*(CapBlock.y/2 - Rounding),0])
sphere(r=Rounding,$fn=12);
translate([-CapBlock.x/2,-Harness[ID]/2 - StudBase.y/2,StudBase.z/2])
rotate([0,90,0])
cylinder(d=Harness[ID] + 2*WallThick,h=CapBlock.x,$fn=12);
}
translate([0,0,-(FrameTube.z/2 - CapM)])
Frame();
PolyCyl(Screw5[ID],2*CapBlock.z,6);
PolyCyl(Stud[OD],Stud[LENGTH],12);
translate([0,0,StudBase.z/2])
cube(StudBase,center=true);
translate([0,-StudBase.y/2,StudBase.z/2])
cube(StudBase + [0,-StudBase.y/2,0],center=true);
translate([-CapBlock.x,-Harness[ID]/2 - StudBase.y/2,StudBase.z/2])
rotate([0,90,0])
cylinder(d=1.5*Harness[ID],h=2*CapBlock.x,$fn=12);
}
}
// Head tube clip for harness cable joint
module HeadClip() {
CableOD = Harness[OD];
difference() {
linear_extrude(height=HeadTube[LENGTH],convexity=10)
difference() {
hull() {
circle(d=HeadTube[ID] + 2*WallThick,$fn=FrameSides);
translate([0,-(HeadTube[ID] + CableOD)/2])
rotate(180/(FrameSides/2))
circle(d=CableOD + 2*WallThick,$fn=FrameSides/2);
}
circle(d=HeadTube[ID] + HoleWindage,$fn=FrameSides);
translate([0,-(HeadTube[ID] + CableOD)/2])
rotate(180/(FrameSides/2))
circle(d=CableOD + HoleWindage,$fn=FrameSides/2);
translate([0,-HeadTube[ID]/2])
square(0.75*CableOD,center=true);
translate([0,HeadTube[ID]])
square(2*HeadTube[ID],center=true);
}
translate([0,-(HeadTube[ID]/2 + CableOD + WallThick - CableTie.z/2),HeadTube[LENGTH]/2])
cube([HeadTube[ID],CableTie.z,CableTie.y],center=true);
for (i=[-1,1])
translate([i*(HeadTube[ID]/2 + WallThick - CableTie.z/2),0,HeadTube[LENGTH]/2])
cube([CableTie.z,HeadTube[ID],CableTie.y],center=true);
}
}
// Programming cable case
ProgCavity = [60.0,18.0,7.0];
ProgBlock = [70.0,24.0,13.0];
ProgCableOD = 4.0;
module ProgrammerCase() {
difference() {
hull() {
for (i=[-1,1], j=[-1,1])
translate([i*(ProgBlock.x/2 - CornerRadius),j*i*(ProgBlock.y/2 - CornerRadius),-ProgBlock.z/2])
cylinder(r=CornerRadius,h=ProgBlock.z,$fn=12);
}
translate([-ProgBlock.x,0,0])
rotate([0,90,0])
PolyCyl(ProgCableOD,3*ProgBlock.x,6);
cube(ProgCavity,center=true);
translate([0,0,ProgBlock.z/2 + ProgCavity.z/2 - EmbossDepth])
cube(ProgCavity,center=true);
translate([0,0,-(ProgBlock.z/2 + ProgCavity.z/2 - EmbossDepth)])
cube(ProgCavity,center=true);
}
translate([0,4,ProgBlock.z/2 - EmbossDepth])
linear_extrude(height=EmbossDepth)
text(text="Bafang BBS02",
size=5,spacing=1.00,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
translate([0,-4,ProgBlock.z/2 - EmbossDepth])
linear_extrude(height=EmbossDepth)
text(text="Programmer",
size=5,spacing=1.00,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
translate([0,4,-ProgBlock.z/2])
linear_extrude(height=EmbossDepth)
mirror([1,0])
text(text="Ed Nisley",
size=5,spacing=1.00,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
translate([0,-4,-ProgBlock.z/2])
linear_extrude(height=EmbossDepth)
mirror([1,0])
text(text="softsolder.com",
size=5,spacing=1.00,font="Bitstream Vera Sans:style=Bold",
halign="center",valign="center");
}
// Half case sections for printing
module HalfCase(Section = "Upper") {
intersection() {
translate([0,0,ProgBlock.z/4])
cube([2*ProgBlock.x,2*ProgBlock.y,ProgBlock.z/2],center=true);
if (Section == "Upper")
ProgrammerCase();
else
translate([0,0,ProgBlock.z/2])
ProgrammerCase();
}
}
//----------
// Build them
if (Layout == "Frame")
Frame();
if (Layout == "DispMount")
DispMount();
if (Layout == "BrakeMagnet")
BrakeMagnet();
if (Layout == "ShiftCap")
ShiftCap();
if (Layout == "HeadClip")
HeadClip();
if (Layout == "BuildClip")
rotate([-90,0,0])
HeadClip();
if (Layout == "BuildShiftCap")
translate([0,0,CapBlock.z])
rotate([180,0,0])
ShiftCap();
if (Layout == "Case")
ProgrammerCase();
if (Layout == "NutMold")
NutMold();
if (Layout == "Upper" || Layout == "Lower")
HalfClamp(Station,Layout);
if (Layout == "Block") {
ClampBlock(Station);
if (false)
color("Red", 0.3)
Frame();
}
if (Layout == "AllBlocks") {
gap = 3*Block.x;
for (i=[0:4])
translate([i*gap - 2*gap,0,0])
Clamp(i);
if (true)
color("Red", 0.3)
Frame();
}
if (Layout == "BuildBlock") {
gap = 5.0;
translate([gap,0,Block.x/2])
rotate([0,90,0])
HalfClamp(Station,"Upper");
translate([-gap - Block.z/2,0,Block.x/2])
rotate([0,90,0])
HalfClamp(Station,"Lower");
}