The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Tag: Art-ish

They might be Art

  • 3D Printed Smashed Glass Coasters: Fragment Path Offsets, Simplified Version

    3D Printed Smashed Glass Coasters: Fragment Path Offsets, Simplified Version

    Rather than use Inkscape or LightBurn to generate all the offsets required to make a solid model, it’s easier to let OpenSCAD handle it:

    Printed Coaster Layout - 100 mm Set G - solid model
    Printed Coaster Layout – 100 mm Set G – solid model

    The overall process:

    • Pick some interesting fragments
    • Scan to get an image
    • Mark the fragments in GIMP
    • Create a suitable circumcircle in LightBurn
    • Use a nesting program like Deepnest to create a nice layout of the fragments within the circle
    • Create the perimeter path as an offset around all the fragments in LightBurn

    Because the fragments have irregular shapes and spacing, creating the perimeter path may also produce small snippets of orphaned geometry which must be manually selected and deleted. I also edit the path to remove very narrow channels between adjacent fragments.

    Which is why you can’t generate that path automatically:

    Printed Coaster Layout - 100 mm Set G - LightBurn perimeter geometry
    Printed Coaster Layout – 100 mm Set G – LightBurn perimeter geometry

    Because LightBurn doesn’t have the ability to name the various paths, the next step requires Inkscape. After importing the LightBurn paths saved as an SVG, group all the fragments and name the group Fragments, then name the perimeter path Perimeter:

    Printed Coaster Layout - 100 mm Set G - Inkscape layer and IDs
    Printed Coaster Layout – 100 mm Set G – Inkscape layer and IDs

    Inkscape still crashes unpredictably while doing what seems to be a simple process, which may be due to the tremendous number of points in the hand-traced fragment outlines. Unfortunately, simplifying the curves in either LightBurn or Inkscape tends to round off the extreme points and increases the likelihood of the fragment not fitting into its recess.

    OpenSCAD generates all the other features in the solid model with paths plucked from that file:

    include <BOSL2/std.scad>
    
    fn = "Printed Fragment Coaster - 100 mm Set G - Inkscape paths.svg";
    
    FragmentThick = 3.8;
    
    BaseThick = 1.0;
    RimHeight = 1.0;
    
    union() {
    
      linear_extrude(h=BaseThick)
        import(fn,id="Perimeter");
    
       color("Green")
      up(BaseThick)
        linear_extrude(h=FragmentThick)
          difference() {
            import(fn,id="Perimeter");
            offset(delta=0.2)
              import(fn,id="Fragments");
          }
    
      color("Red")
      up(BaseThick)
        linear_extrude(h=FragmentThick + RimHeight)
          difference() {
            offset(delta=2.5)
              import(fn,id="Fragments");
            offset(delta=1.2)
              import(fn,id="Fragments");
          }
    
    
    }
    

    The Perimeter path defines the overall shape of the coaster as a 1.0 mm thick slab, visible as the white-ish line around the edge and at the bottom of all the fragment recesses.

    Atop that, the green shape is the same Perimeter shape, with the Fragment shapes removed after the offset() operation enlarges them by 0.2 mm to ensure enough clearance.

    Finally, the red walls containing the epoxy above each fragment are 1.3 mm wide, the difference of the two offset() operations applied to the Fragments.

    Because the outer edge of the wall is 2.5 mm away from the edge of its fragment:

    • The Perimeter path must be offset at least 2.5 mm from the Fragments in LightBurn. I used 4.0 mm to produce a small lip around the outside edge of the coaster.
    • The fragment shapes must be placed at least 5.0 mm apart to prevent the walls from overlapping. I set Deepnest to exactly 5.0 mm spacing, but you can see a few places where the fragments come too close together. I think this happens due to an approximation deepnest uses while rotating the paths, but it may be better to manually adjust the errant fragments than increase the average space.

    While this still requires manually tracing the glass fragments and fiddling a bit with Inkscape, the overall process isn’t nearly as burdensome as getting all the offsets correct every time.

    However, some oddities remain. OpenSCAD produced this result during the first pass through the process for this coaster:

    Printed Coaster Layout - 100 mm Set G - spurious point
    Printed Coaster Layout – 100 mm Set G – spurious point

    As far as I can tell, the spurious point came from a numeric effect, because telling Inkscape to store only five decimal places in the SVG file reduced the spike to the small bump seen in the first picture. I cannot replicate that effect using the same files and have no explanation.

  • 3D Printed Smashed Glass Coasters: Fragment Path Offsets, Complicated Version

    3D Printed Smashed Glass Coasters: Fragment Path Offsets, Complicated Version

    This should have been trivially easy and turned into a nightmare.

    The problem to be solved is generating paths around fragments for the various recesses / reflectors / lips / rims / whatever. This clutter collector was a test piece:

    Smashed Glass Clutter Collector - overview
    Smashed Glass Clutter Collector – overview

    The corresponding paths:

    Printed Clutter Collector - Inkscape layers
    Printed Clutter Collector – Inkscape layers

    Which was how I convinced myself I didn’t need all those paths to make the thing, but that’s why it’s a test piece.

    Anyhow, Inkscape has a remarkably complex and fiddly way of generating precise offsets:

    • Select a path
    • Hit Ctrl-J to create a Dynamic Offset path
    • Drag the offset path away from the original in any direction for any distance
    • Hit Ctrl-Shift-x to fire up the XML editor (!)
    • Change the offset path’s inkscape:radius property to the desired offset

    During the course of working that out, I discovered Inkscape 1.4.2 is incredibly crashy when creating and dealing with offsets, to the point that I simply gave up trying to do that.

    LightBurn has no trouble creating a path at a specific offset from another path and can export the result as an SVG file. You then use Inkscape to set the path IDs so that OpenSCAD can import them by name for a specific use. Although Inkscape isn’t entirely stable doing even that seemingly trivial task, it’s usable.

    For reasons I do not profess to understand, setting the name of a path sometimes does not set its ID property, which is required by OpenSCAD to extract it from the SVG file. Instead, you must verify / set the ID using the path’s Object Properties window:

    Printed Clutter Collector - Inkscape path properties
    Printed Clutter Collector – Inkscape path properties

    I also set the Label property, because … why not?

    A top view shows how the various paths look in real life:

    Smashed Glass Clutter Collector - top view
    Smashed Glass Clutter Collector – top view

    The OpenSCAD program generating the solid model from those paths:

    include <BOSL2/std.scad>
    
    fn = "Printed Clutter Collector - Inkscape layers.svg";
    
    FragmentThick = 5.0;
    
    BaseThick = 1.0;
    RimHeight = 7.0;
    
    union() {
      linear_extrude(h=BaseThick)
        import(fn,id="Perimeter");
        
      linear_extrude(h=BaseThick + FragmentThick + RimHeight)
        difference() {
          import(fn,id="Perimeter");
          import(fn,id="Rim");
        }
    
      up(BaseThick - 0.05)
        linear_extrude(h=FragmentThick)
          difference() {
            import(fn,id="Perimeter");
            import(fn,id="Recess");
          }
    
    }
    

    Which becomes this:

    Printed Clutter Collector - solid model
    Printed Clutter Collector – solid model

    Save that, import it into PrusaSlicer, pick the filament, and print it out.

    While the printer buzzes away, use LightBurn to cut a shiny blue metallized paper reflector and a cork base using the appropriate paths; presumably you set those paths to LightBurn layers corresponding to the various materials. The Inkscape file has those paths with their names, because … why not?

    To assemble:

    • Cover the bottom of the recess with epoxy
    • Squish the reflector in place with epoxy oozing around it on all sides
    • Cover the reflector with epoxy
    • Squish the fragment atop the reflector with epoxy oozing around it on all sides
    • Fill the recess level with the lip inside the perimeter wall
    • Pop bubbles as needed
    • When it’s cured, stick the cork sheet on the bottom

    Note that the OpenSCAD program uses the path geometry without question, so it’s your responsibility to create them with the proper offsets and names.

    While all of that to-ing and fro-ing works, in the sense that I did make a rather nice clutter collector, it’s entirely too complicated and fiddly to be useful. Instead, I can now generate a coaster from just the fragment outlines and the coaster’s outer perimeter, a straightforward process which requires a bit more explanation.

  • 3D Printed Smashed Glass Coasters: Fragment Layout

    3D Printed Smashed Glass Coasters: Fragment Layout

    I selected and laid out the smashed glass fragments for the first few coasters by hand:

    Smashed Glass - 4in - group A - tweaked
    Smashed Glass – 4in – group A – tweaked

    Which worked reasonably well for coasters with a rim around the perimeter to hold in the epoxy covering the entire top surface:

    Printed Coaster Layout - solid model
    Printed Coaster Layout – solid model

    The problem with smooth-top coasters is this:

    Printed Coasters - epoxy fill
    Printed Coasters – epoxy fill

    A slightly sweaty or wet mug can get a firm suction lock on that smooth top, lift the coaster off the table, then drop it into a plate of food.

    So I put a rim around each fragment to separate the epoxy surfaces and break the suction lock:

    Printed Coaster Layout - 5 inch Set B
    Printed Coaster Layout – 5 inch Set B

    Each recess has a narrow inner lip as a border inside the raised perimeter, which may not be strictly necessary, but IMO nicely sets off the fragments:

    Smashed Glass 3D Printed Coaster - Set B
    Smashed Glass 3D Printed Coaster – Set B

    Each fragment must be spaced far enough from its three neighbors to allow for those lips and perimeter walls, which requires more fussing than I’m willing to apply on a regular basis.

    So fetch & install Deepnest to fuss automagically. The program hasn’t been updated in years and the Linux version segfaults on my Manjaro boxen, but the Windows version runs fine on the Mini-PC I use for LightBurn:

    Deepnest Fragment Set E - in progress
    Deepnest Fragment Set E – in progress

    The Mini-PC runs maxi-hot, though, so at some point I must install Deepnest on the Token Windows Laptop for more grunt.

    Deepnest requires a large shape representing the “sheet” in which to arrange the other pieces, so:

    • Import the fragments outlines into LightBurn
    • Create a suitable circle
    • Export circle + fragments as an SVG file
    • Import into Deepnest
    • Set 5 mm spacing & other suitable parameters
    • Let it grind until a nice arrangement pops out
    • Save as Yet Another SVG file

    The output SVG has the fragment outlines arranged to fit within the circle, but does not include the circle. That’s fine, because the next step involves creating a conformal perimeter around the entire group of fragments and preparing it for input to OpenSCAD to create a solid model:

    Printed Coaster Layout - 5 inch Set C - solid model
    Printed Coaster Layout – 5 inch Set C – solid model

    So. Many. Smashed. Glass.

  • 3D Printed Smashed Glass Coasters: Fragment Outlines

    3D Printed Smashed Glass Coasters: Fragment Outlines

    Because all smashed glass fragments are different, the problem boils down to locating their borders in order to create recesses to hold them.

    The fragments, being slightly green-tinted glass, have very low contrast against any background color. This picture shows the result of applying GIMP’s Select by color tool with a reasonable color tolerance:

    Printed Fragment Coaster - 5 inch - GIMP mask
    Printed Fragment Coaster – 5 inch – GIMP mask

    Fiddling with the tolerance trades off more trash outside the fragments with less accurate selection inside them. While it’s possible to clean up the ensuing mess, it’s incredibly tedious and more trouble than just tracing the edges manually using a stylus and graphic tablet. For the record, a white background produces similar results.

    I began tracing the fragments with meticulous attention to following their exact outline, which certainly produced angular shapes:

    Smashed Glass paths - quick mask
    Smashed Glass paths – quick mask

    It also takes approximately forever and is way tedious.

    The intent was to apply a uniform offset to those outlines in OpenSCAD, but it turned out the fragment edges aren’t exactly perpendicular to the scanner platform and the protruding glass extends beyond any reasonable offset; determining how unreasonable the offset must be requires cutting a fitting template:

    Printed Coasters - fit test
    Printed Coasters – fit test

    Incidentally, the dark smudge in the bottom fragment isn’t dirt, it’s the Ford logo above the identification numbers for that particular window:

    Printed Coasters - glass fragment logo
    Printed Coasters – glass fragment logo

    You’ll note the rather sloppy fit inside the template.

    However, the little glass shard sticking out on the upper right side does not match a corresponding template notch. You’re looking at the top of the fragment, but the scanner was looking at the bottom and that shard angles outward toward the top, where it was out of focus and I didn’t notice it.

    Although that fragment fit its recess, such things eventually cause problems:

    Printed Coasters - fragment misalignment
    Printed Coasters – fragment misalignment

    The chipboard template isn’t as tall as the printed recess, which means some of those protruding shards can wiggle through.

    Protip: Avoid the temptation to just press a fragment into its ill-fitting recess, as shattered glass doesn’t have much strength. AFAICT, only air pressure holds the shards in place (they’re not windshields and not laminated), so you must handle them like they’re made of ahem glass.

    The scans produce 300 DPI images, so each pixel is 0.085 mm across and half a millimeter is about 6 pixels wide. I tried tracing the fragments with the center of a 12 pixel circular GIMP brush, so the outer edge of the brush painted a 0.5 mm margin around the fragment, but keeping the middle of the brush on the edge was entirely too fussy.

    I eventually settled on a 6 pixel brush, painted it just outside the margin, and paid more attention to shadows that might be shards protruding toward the top:

    Printed Clutter Collector - fragment GIMP selection
    Printed Clutter Collector – fragment GIMP selection

    That works out well with the fragments on the desk to resolve any issues.

    The garish red in those screenshots is GIMP’s Quick Mask mode allowing you (well, me) to paint the selection with either black or white to mask or select the pixels.

    After painting the entire perimeter of the fragment, use the Bucket Fill tool to pour white into the interior and select the entire fragment. This is much easier than scribbling over the fragment, which is what I did until I realized I was working too hard.

    Get out of Quick Mask mode, convert the selection to a Path, then export the path (or paths) to an SVG file.

    The initial test piece was a round coaster:

    Smashed glass printed coaster - detail
    Smashed glass printed coaster – detail

    But a conformal perimeter is much more interesting:

    Smashed Glass 3D Printed Coaster - Set B
    Smashed Glass 3D Printed Coaster – Set B

    However, an interesting perimeter requires an interesting fragment layout …

  • 3D Printed Smashed Glass Coasters: Optimization

    3D Printed Smashed Glass Coasters: Optimization

    A pair of 3D printed smashed glass coasters for a friend:

    Printed Coasters - in use
    Printed Coasters – in use

    The black PETG coaster under the French Press:

    Printed Coasters - black PETG finished
    Printed Coasters – black PETG finished

    The white PETG coaster under the mug:

    Printed Coasters - white PETG finished
    Printed Coasters – white PETG finished

    They’re considerably improved from the first attempt:

    Smashed glass printed coaster - front view
    Smashed glass printed coaster – front view

    More details to follow …

  • Smashed Glass: 3D Printed Coaster Epoxy Fill

    Smashed Glass: 3D Printed Coaster Epoxy Fill

    After positioning the smashed glass fragments atop reflective metalized paper in the 3D printed coaster base, I poured epoxy over everything and, after popping some bubbles, left it to cure:

    Smashed glass printed coaster - detail
    Smashed glass printed coaster – detail

    I sprayed the white-ish fragments (on the left) with satin-finish clear rattlecan “paint” in the hopes it would keep epoxy out of the cracks between the glass cuboids and leave the highly reflective air gaps. While it did a reasonable job of sealing, it bonded poorly with the epoxy and produced a dull surface finish.

    The unsprayed fragments (on the right) turned out better, although the one in the upper right has a thin air bubble / layer on top. The unsealed cracks between the cuboids show well against the reflective layers, so I think spraying the fragments isn’t worth the effort.

    The printed base has a 1 mm tall rim to retain the epoxy:

    Printed Coaster Layout - solid model
    Printed Coaster Layout – solid model

    I mixed enough epoxy to fill half the volume of a disk with the same overall OD and depth (V = h × π × d²/4), which turned out to be barely enough produce a level surface at the rim. There didn’t seem that much epoxy left on the various measuring / mixing cups, but next time I’ll round upward.

    Many of the bubbles emerged from below the metalized paper, as well as between the glass and paper, so next time:

    • Set up a level platform with a sacrificial cover
    • Omit the adhesive sheet under the metallized paper
    • Pour a little epoxy into the recesses
    • Squish the metallized paper into place
    • Pour more epoxy to cover the paper
    • Gently squish the glass fragments into place
    • Ease more epoxy around the fragments
    • Chivvy the bubbles away
    • Fill to the rim

    The top isn’t exactly flat and has some dull areas, so at some point I want to make it flat with 220 grit sandpaper, work up to some 3000 grit paper I’ve been saving for a special occasion, then finish it off with Novus polish. Which seems like enough hassle to keep the coaster under my sippy cup for a while.

  • Smashed Glass: 3D Printed Coaster Base & Metallized Paper Reflectors

    Smashed Glass: 3D Printed Coaster Base & Metallized Paper Reflectors

    The motivation for making Yet Another Coaster was to see if combining a few techniques I’ve recently learned would produce a nicer result.

    Spoiler: Yup, with more to be learned and practiced.

    This is a somewhat nonlinear narrative reminding me of things to do and not do in the future, so don’t treat it as a direct how-to set of instructions.

    Thus far, the best way to highlight fragments of smashed glass has been to put them atop an acrylic mirror:

    Smashed Glass Coaster 2 - fragment detail
    Smashed Glass Coaster 2 – fragment detail

    But a 3 mm acrylic mirror layer makes for a rather thick coaster:

    Smashed Glass Coaster 5 - edge alignment A
    Smashed Glass Coaster 5 – edge alignment A

    The glass fragments sit inside holes in the next two (or three or whatever) acrylic layers, which must have a total thicknesses slightly more than the glass thickness and remain properly aligned while assembling the whole stack:

    Smashed Glass Coaster 5 - alignment pin
    Smashed Glass Coaster 5 – alignment pin

    Bonus: all that cutting generates an absurd amount of acrylic scrap. I eventually put much of it to good use, but not producing it in the first place would be a Good Thing …

    So 3D print the entire base, which requires generating a solid model with recesses for the fragments:

    Printed Coaster Layout - solid model
    Printed Coaster Layout – solid model

    Because there’s no real justification for an optical-quality mirror under smashed glass, use reflective metallized paper in the recesses as reflectors:

    Smashed glass printed coaster - metallized paper assembly
    Smashed glass printed coaster – metallized paper assembly

    The glass is more-or-less greenish-blueish, so I used a strip of green metallized paper that made the glass fragments green. Obviously there’s some room for choice down there.

    Both the base and the reflectors use outlines of the fragments, so I started with a scan of the approximate layout in GIMP:

    Smashed Glass - 4in - group A - tweaked
    Smashed Glass – 4in – group A – tweaked

    I traced the outline of each fragment using the Scissors Select Tool, which lays line segments along the sharpest gradient between clicked points, then switched into Quick Mask mode to adjust & smooth the results:

    Smashed Glass paths - quick mask
    Smashed Glass paths – quick mask

    That’s the result after sketching & saving all the paths as separate SVG files to allow importing them individually into InkScape, OpenSCAD, and LightBurn.

    Which turned out to be suboptimal, as it let me write an off-by-one blooper omitting the last file from the OpenSCAD model:

    fn = "Fragment layout - 4in.svg";
    fp = ["A","B","C","D","E","F"];
    <snippage>
            for (p = fp)
              import(fn,id=str("Fragment ",p));
    
    

    A better choice puts all the paths into a single named group, saved as a single SVG file, then importing that group from the file using its name, along these lines:

    fn = "Fragment layout - 4in.svg";
    fg = ["Fragments"];
    <snippage>
            import(fn,id=fg);
    

    It’s not clear if I can do that directly from GIMP by saving all the paths in a single file, then importing that lump into Inkscape as a group, but it’ll go something like that.

    After getting the fragment paths into Inkscape, add a 0.5 mm offset to each path to clear any non-vertical edges. This will be checked with the template cut using LightBurn as described below.

    Add a 1 mm rim around the outside, with the 4 inch OD matching the usual PSA cork base:

    Fragment layout - 4in
    Fragment layout – 4in

    Now’s the time to nudge / rotate the outlines so they have at least a millimeter of clearance on all sides / ends, because that’s about as thin a section of printed plastic as you want.

    Locating the center of the OD (and, thus, everything inside) at the lower-left corner of the Inkscape page will put them at the OpenSCAD origin. I have set Inkscape to have its origin at the lower left, rather than the default upper left, so your origin may vary.

    Select one of the paths:

    Fragment layout - Inkscape A
    Fragment layout – Inkscape A

    Then set the ID in its Object Properties:

    Fragment layout - Inkscape A - properties
    Fragment layout – Inkscape A – properties

    There is an interaction between the name over in the Layers and Objects window, which apparently comes from the GIMP path name for the imported fragments, and the resulting ID and Label in the Object Properties window. However, renaming an object on the left, as for the Rim and Perimeter circles, does not set their ID or Label on the right. Obviously, I have more learning to do before this goes smoothly.

    With everything laid out and named and saved in an SVG file, the OpenSCAD program is straightforward (and now imports all the fragments):

    include <BOSL2/std.scad>
    
    NumSides = 4*4*3*4;
    
    fn = "Fragment layout - 4in.svg";
    fp = ["A","B","C","D","E","F","G"];
    
    FragmentThick = 5.0;
    
    BaseThick = 1.0;
    RimHeight = 1.5;
    
    union() {
      linear_extrude(h=BaseThick)
        import(fn,id="Perimeter",$fn=NumSides);
      linear_extrude(h=BaseThick + FragmentThick + RimHeight)
        difference() {
          import(fn,id="Perimeter",$fn=NumSides);
          import(fn,id="Rim",$fn=NumSides);
      }
      up(BaseThick - 0.05)
        linear_extrude(h=FragmentThick)
          difference() {
            import(fn,id="Perimeter",$fn=NumSides);
            for (p = fp)
              import(fn,id=str("Fragment ",p));
          }
    }
    
    

    Which squirts out the solid model appearing above.

    Feeding it into PrusaSlicer turns the model into something printable:

    Printed Coaster Layout - slicer
    Printed Coaster Layout – slicer

    And after supper I had one in my hands.

    Before doing that, however, import the same SVG file into LightBurn, as on the left:

    Printed Coaster Layout - LightBurn
    Printed Coaster Layout – LightBurn

    On the right, duplicate it, put the inner Rim on a tool layer, put the rest on a layer set to cut chipboard, and make a template to verify those holes fit around the fragments:

    Smashed glass printed coaster - fragment test fit
    Smashed glass printed coaster – fragment test fit

    Which a few didn’t, explaining why I go to all that trouble. Iterate through GIMP → paths → SVG → Inkscape → LightBurn until it’s all good. Obviously, you do this before you get too far into OpenSCAD, but they all derive from the Inkscape layout, so there’s not a lot of wasted motion.

    The middle LightBurn layout insets the fragment outlines by 0.25 mm to ensure the paper fits easily and puts them on a layer set to cut metallized paper. Those fragments then get duplicated and rearranged within the rectangle on the top to fit a strip of metallized paper from the scrap box. Fire The Laser to cut them out and stick them to the bottom of their corresponding 3D printed recesses with leftover snippets of craft adhesive sheet as shown above.

    I had originally intended to cover the bottom of the entire sheet of metallized paper with an adhesive sheet, but realized the whole affair was going to be submerged in epoxy, so just making sure the paper didn’t float away would suffice.

    Next, mix up some epoxy …