The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Category: Home Ec

Things around the home & hearth

  • Remembering Which Cells Need Charging

    My Sony DSC-H5 eats NiMH cells like candy, which means I must haul along a pocketful of the things. That means I often wind up with a case containing one charged pair and one uncharged pair.

    Ditto for swapping cells in the blinky lights on our bikes.

    Pop quiz: which pair is which?

    Battery Charge State Reminder
    Battery Charge State Reminder

    It’s pretty easy:

    • Nose-to-tail = as in the camera = charge ’em
    • Nose-to-nose = as in the charger = ready to use

    You could do some remote psychoanalysis based on that sort of behavior, but you’d be completely right.

  • Constraining a Sewer Snake

    Constrained sewer snake
    Constrained sewer snake

    Had the occasion to run the flexy snake through a kitchen drain that turned out to be not as plugged up as I expected, which is always good news. Replaced the cleanout plug, hosed off the snake, coiled it up, and applied the usual three nylon cable ties to keep the snake together.

    It took me years to figure out that last step. None of the old-school tricks work for me; I can’t tie knots in string / twine / rope while simultaneously holding those coils together and the snake resists any attempt to weave the loose ends into the bundle.

    Mercifully, I don’t use the snake all that often and I don’t feel at all bad about tossing three cable ties each time.

    You figured that out long ago, right?

  • Repurposing Tomato Cages

    Bending tomato cage wires
    Bending tomato cage wires

    Mary wanted to convert some old tomato cages into flower supports and deer protectors (until the flowers get big enough), by the simple expedient of flipping the cages over with the large end down. She figured we could chop off the wire ends that normally anchor the cages to the ground, then bend them into hooks for secure ground anchors.

    I deployed the linesman’s pliers, which only showed that my wire size estimation is grossly underdeveloped. The high-carbon steel wires required bolt cutters… but a few minutes of twang effort scattered two dozen really stiff wires across the patio.

    I ran a marker across the pile at the bend point, grabbed two random steel rods in the vise and, in short order, bent up a stack of ground anchors.

    Not every job requires G-Code …

  • How to Solve a Parking Problem

    The Walkway Over the Hudson has been a resounding success, at least measured by the number of people using it. The Parker Avenue parking lot has about 80 spaces and, during most days, is jammed full.

    The NYS park system now owns the Walkway and, in their infinite wisdom, decided that the parking facilities should have a fee just like the rest of their lots: $5 / 4 hours.

    Here’s what the Walkway lot looked like on the day the fee went into effect…

    Walkway Parking Lot With Parking Fee In Full Effect
    Walkway Parking Lot With Parking Fee In Full Effect

    To quote from the Poughkeepsie Journal:

    State officials hope there will be no decline in visitors with the new parking fee, said State Parks spokesman Kristen Davidson.

    Basically, there’s enough free on-street parking in the area that most folks park nearby and hike in, which makes sense for a park consisting of about two miles of walking path. The parking fee amounts to a tax on handicapped and elderly visitors who find it difficult to navigate streets and ramps.

    On the bright side, it’ll be a lot easier to bike across the bridge…

  • Wedgie-Free Undies

    Wedgie-free undies
    Wedgie-free undies

    They seem to be referring to an auto-wedgie, not the dreaded atomic wedgie.

    The weird part? This was in the ladies’ section. We were picking up socks for our own young lady…

  • Water Bottle Spring Cap Repair

    One of our nice aluminum water bottles hit the floor and, of course, the tiny little hinge shattered. It’s some wonderful engineering plastic, but just look at the leverage you can apply to those few millimeters of material. This is the sort of repair that can’t possibly be economically justified, but it pisses me right off when something that should be rugged turns out to be this fragile.

    The 2 mm steel hinge pin snapped the molded plastic center post of the hinge off the cap; we found the larger fragment, but the smaller one may lurk under the refrigerator for quite some time. Nothing bonds to this plastic and, if the post broke in the first place, adhesive isn’t going to help.

    Broken hinge
    Broken hinge

    Some doodling showed that a replacement hinge post should be machineable. The general idea was to square up the remaining chunk of the post, then attach a replacement hinge pivot with a screw. The post is almost exactly 1/4-inch thick, call it 6.2 mm, which means the right-angle feature under the pivot ought to keep the whole affair from twisting.

    Water Bottle Hinge
    Water Bottle Hinge

    I planned to leave the left side unmachined and cut it to fit by hand, but then figured, eh, just make it happen. I also expected to leave the area around the screw a lot thicker, with a neat counterbore around the head.

    This being a bash-to-fit, file-to-hide kind of project, I wrote a snippet of G-Code (at the bottom of the post) to chew out the part from a sheet of Lexan, then did the perpendicular hole & countersinking with manual CNC.

    No pix of that; I was working in a white-hot fury. Basically, I double-sticky-taped a slab of Lexan to a sacrificial sheet, clamped it to the tooling plate, and had at it with a 2 mm end mill. Cutting a 6.4 mm sheet with a 2 mm end mill is a bit iffy, as the flutes are just barely that long; the mill was armpit-deep in swarf and I was dribbling water into the cut to keep it cool.

    By the time I stopped for a picture, the situation looked like this.

    Replacement hinge part
    Replacement hinge part

    For what it’s worth, that’s the second part. I had to lower the screw head below the top of the half-round feature on the left end in order to clear the cap. That’s what CNC is really good for in my shop: make another one, just like the other one, only different exactly like that.

    I drilled a #50 (2-56 tap) hole in the cap pretty much by eye, using laser targeting to touch off.

    Laser aligning to hinge stub
    Laser aligning to hinge stub

    The hole wound up minutely too far inboard, but some filing cleaned up the stub edge and it was all good. I started the tap in the mill, held loosely in the chuck and turning it with my fingers, then finished up on the bench.

    The screw hole goes all the way through the cap. I filed the screw down so the end sits flush at the bottom of the cap, where the silicone rubber gasket should seal firmly against it.

    Here’s what the hinge looks like with all the bits assembled. The spring bears on the screw head, which makes the cap open with more snap than before. I put a little counterbore under the screw head, even after lowering it, to reduce the spring tension.

    Rebuilt hinge
    Rebuilt hinge

    The cap has a spring-loaded latch that never worked very well in the first place and this repair didn’t improve it. As nearly as I can tell, the molded ledge on the cap has a rounded edge that the latch simply cannot engage. This is beyond even my level of interest; Mary was accustomed to using the wire snap to hold the cap closed and that practice will continue.

    Works well enough for us and I got some Quality Shop Time on a rainy afternoon.

    The G-Code uses a slightly modified & simplified version of the tool length probe routines. I’m not convinced that using the G59.3 coordinate system is the right way to go, but everything else seems worse.

    
    (Water bottle hinge repair)
    (Ed Nisley - KE4ZNU - June 2010)
    (Rough-cut 1/4-inch plate with clamp at +Y)
    (Sacrificial plate below, double-stick tape to secure)
    (Tool change @ G30 position above length probe)
    
    (-- Global dimensions & locations)
    
    #<_Stock_Thick> =        6.5                    (overall thickness)
    
    #<_Traverse_Z> =        1.0
    #<_Safe_Z> =            30.0                (clamp clearance)
    
    (-- Section controls)
    
    #<_Do_Outline> =    1
    #<_Do_Drill> =        1
    
    (-------------------)
    (-- Initialize new tool length at probe switch)
    (    Assumes G59.3 is still in machine units, returns in G54)
    
    #<_Probe_Speed> =        250            (set for something sensible in mm or inch)
    #<_Probe_Retract> =        1            (ditto)
    
    O<Probe_Tool> SUB
    
    G49                    (clear tool length compensation)
    G30                    (to probe switch)
    G59.3                (coord system 9)
    
    G38.2 Z0 F#<_Probe_Speed>        (trip switch on the way down)
    
    G91
    G0 Z#<_Probe_Retract>            (back off the switch)
    G90
    
    G38.2 Z0 F[#<_Probe_Speed> / 10]    (trip switch slowly)
    
    #<_ToolZ> = #5063                    (save new tool length)
    
    G43.1 Z[#<_ToolZ> - #<_ToolRefZ>]    (set new length)
    
    G54
    G30                    (return to safe level)
    
    O<Probe_Tool> ENDSUB
    
    (-------------------)
    (-- Initialize first tool length at probe switch)
    
    O<Probe_Init> SUB
    
    #<_ToolRefZ> = 0.0        (set up for first call)
    
    O<Probe_Tool> CALL
    
    #<_ToolRefZ> = #5063    (save trip point)
    
    G43.1 Z0                (tool entered at Z=0, so set it there)
    
    O<Probe_Init> ENDSUB
    
    (-------------------)
    
    (-- Get started ...)
    
    G40 G49 G54 G80 G90 G92.1 G94 G97 G98        (reset many things)
    
    M5
    
    (msg,Verify clamp to +Y, stock taped down)
    M0
    
    (msg,Verify X=0 at left edge, Y=0 on finished centerline)
    M0
    
    (msg,Verify tool touched off at Z=0 on surface)
    M0
    
    O<Probe_Init> CALL
    
    T0 M6                            (ensure first tool change pauses)
    
    (-- Drill the hinge pin hole)
    
    #<Pin_X> =                7.0
    #<Pin_Y> =                0.0
    
    #<Drill_Dia> =            2.06    (Drill diameter)
    #<Drill_Num> =            46        (Drill number)
    #<Tool_Num> =            146        (Tool number)
    #<Drill_Radius> =        [#<Drill_Dia> / 2]
    #<Drill_RPM> =            3000
    #<Drill_Feed> =         [#<Drill_Dia> * 100]
    
    #<Drill_Depth> =        [#<_Stock_Thick> + 2 * #<Drill_Dia>]
    
    O<Doing_Drill> IF [#<_Do_Drill>]
    
    (debug,Insert Num #<Drill_Num> drill)
    T#<Tool_Num> M6
    
    O<Probe_Tool> CALL
    
    (debug,Set spindle to #<Drill_RPM>)
    M0
    
    F#<Drill_Feed>
    
    G0 Z#<_Traverse_Z>
    
    G83 X#<Pin_X> Y#<Pin_Y> Z[0 - #<Drill_Depth>] R#<_Traverse_Z> Q[2 * #<Drill_Dia>]
    
    O<Doing_Drill> ENDIF
    
    (-- Mill outline)
    
    #<Hinge_Radius> =        3.75                        (half-width of hinge body)
    #<Cutout_Base> =        2.75
    
    #<Cutout_Screw> =        1.50
    #<Cutout_Screw_Y> =        [#<Hinge_Radius> - #<Cutout_Screw>]
    #<Cutout_Screw_A> =        ASIN [#<Cutout_Screw_Y> / #<Hinge_Radius>]
    #<Cutout_Screw_X> =        [#<Hinge_Radius> * COS [#<Cutout_Screw_A>]]
    
    #<Passes> =                3
    
    #<Mill_Dia> =            1.98            (end mill diameter)
    #<Tool_Num> =            20
    #<Mill_Radius> =        [#<Mill_Dia> / 2]
    #<Mill_RPM> =            3000
    #<Mill_Feed> =            100
    
    #<Entry_XL> =            [0 - #<Mill_Dia>]
    #<Entry_YL> =            [0 - 2 * #<Hinge_Radius>]
    
    O<Doing_Outline> IF [#<_Do_Outline>]
    
    (debug,Insert #<Mill_Dia> mm end mill)
    T#<Tool_Num> M6
    
    O<Probe_Tool> CALL
    
    (debug,Set spindle to #<Mill_RPM>)
    M0
    
    F#<Mill_Feed>
    
    G0 X0 Y[0 - 2 * #<Hinge_Radius>]    (get to comp entry point)
    G0 Z#<_Traverse_Z>
    
    G42.1 D#<Mill_Dia>                                    (cutter comp right)
    G1 X#<Pin_X> Y[0 - #<Hinge_Radius>]
    
    #<Step_Z> = [#<_Stock_Thick> / #<Passes>]
    #<Current_Z> = [0 - #<Step_Z>]
    
    O<Outline_Passes> REPEAT [#<Passes>]
    
    G2 J[0 - #<Hinge_Radius>] Z#<Current_Z>                (ramp down to cutting level)
    
    G3 Y#<Hinge_Radius> J#<Hinge_Radius>
    G3 X[#<Pin_X> - #<Cutout_Screw_X>] Y#<Cutout_Screw_Y> J[0 - #<Hinge_Radius>]
    G1 X0
    G1 Y[0 - [#<Hinge_Radius> - #<Cutout_Base>]]
    G1 X#<Pin_X>
    G1 Y[0 - #<Hinge_Radius>]
    
    #<Current_Z> = [#<Current_Z> - #<Step_Z>]
    
    O<Outline_Passes> ENDREPEAT
    
    G0 Z#<_Safe_Z>
    
    G40
    
    O<Doing_Outline> ENDIF
    
    G30                    (back to tool change position)
    
    (msg,Done!)
    
    M2
    
  • Epson R380 Printer: Resetting the Waste Ink Counters

    So a few days after topping off the continuous ink tanks on my Epson R380 printer, we had a series of thunderstorms that prompted me to turn everything off. Upon turning the printer back on, its fancy LCD panel showed a message along the lines of

    Service is required. Contact Epson Customer Service.

    Oddly, it continued to print perfectly with no further complaints. The error message appeared only at power-on, then politely went away when I pressed the OK button.

    Well, that puppy is long out of warranty, even if I wasn’t using a continuous ink system, soooo… what to do? The printer produces absolutely no diagnostic codes other than that error message.

    A bit of searching gave me the Maintenance Manual for that family of printers. That message isn’t among the ones listed.

    Further searching suggests that at least one of the two waste ink pads / tanks is nearly full and that ignoring the problem will cause the printer to shut itself down, lest it dribble ink. The listed messages warn that the printer is approaching the “end of its service life”, which isn’t the message I saw, but it’s close enough.

    The Maintenance Manual suggests that it’ll be cheaper and better to simply buy a new printer, as replacing the waste ink tanks may cost more than the printer is worth. The website points out that providing a customer-replaceable tank would drive up the cost of the printer, because most customers would buy a new printer before filling the tank.

    In order to get to the waste ink tank, you must remove:

    • Paper Support
    • Printer Cover
    • Front Cover
    • Right Housing
    • Left Housing
    • USB Housing
    • Upper Housing
    • Panel Unit
    • EMI Frame

    I can see why it might take a trained tech a few hours to get all that done… and then reassemble in reverse order.

    The Epson website has a link to a program that will reset the waste ink counters for one of the tanks. Downloaded & ran it on the Token Windows Laptop; it tells me there’s no problem.

    Hmmm

    So I ordered an external waste ink tank from the usual eBay supplier. The hardware is grossly overpriced ($20 delivered) for what it is (large tube with sealed endcaps, some tubing & barb fittings, a syringe), but the deal includes links to programs that will reset the counters. I found several of those programs by myself, so it’s not as if you must actually spend money to reset the printer’s counters. I figured this was in the nature of a learning experience.

    Turns out that the programs are provided by parties having, shall we say, long-term interests that may not coincide with mine. To wit, I’d be batshit crazy to run those programs on a PC I cared about.

    [Update: Something like that.]

    The various program files all passed a ClamAV virus scan, but that doesn’t mean anything these days.

    So, during the next hour:

    • Boot System Rescue CD on my oldest Token Windows Laptop
    • Run partimage to back up the Windows partition to another partition
    • Disconnect from the house LAN
    • Reboot in Windows, which evidently hasn’t seen the light of day in about a year
    • Stifle bleating requests for updates
    • Copy the programs from a USB stick, install as needed
    • Reset one of the ink counters (more on this below)
    • Reboot in SRC
    • Restore the partition from the backup

    All that is straightforward and I’ve written about it earlier. Search the blog for more info using the obvious keywords.

    I attempted to restore the drive’s Master Boot Record from the partition backup file, but partimage complained that the drive size in the backed-up MBR did not match the existing drive size, which suggests something tinkered with the drive’s MBR between the backup and the restore.

    Hmmm….

    You might want to do a bit of reading on Boot Sector Viruses at this point. I have no other evidence to suggest that’s what’s going on, other than to remind you that programs need not do only what they say they’ll do.

    Given all that, I figured this was a great time to update the Token Windows Laptop to Xubuntu 10.04, which installed Grub2 in the MBR and wiped away anything placed therein. The box is heavily multi-booted: Dell Diags, XP, Puppy, and now Xubuntu 10.04.

    Without naming names or providing links:

    • The Russian program seems to not include the R380, but it does include others in that family. I elected to not reset the counters using that program.
    • The Chinese program seems to be a bootleg copy of the Official Epson Adjustment Program, although it’s rife with misspellings and grammatical errors. I told it to reset the “Main Pad” counter and give me a dump of the EEPROM.

    The Main Pad had 16008 counts of the maximum 16200, while the Platen Pad had only 3019 of 54513. Those names do not correspond to anything in the Maintenance Manual, but I suspect the Main Pad is the Waste Ink Tray at the head-cleaning station and the Platen Pad is the Waste Ink Pad running across the printer to catch the overspray from borderless prints.

    Resetting the Main Pad counter to zero cleared the error message; the printer is perfectly happy now. I’ll install the external waste ink tank when I clear the workbench after building the next GPS interface for our HTs.

    The program reported 9922 pages printed. Figuring 7 bottles of ink at 250 ml each, that’s 0.18 ml per page. That’s a slight overestimate because the ≈50 ml tanks were just topped off, but it’s close enough. I’m guessing head cleaning consumed much of that ink, as the printer does plenty of that, and the number of pages seems close to half the number of counts.

    Perhaps it performs a cleaning when more than X minutes has elapsed since the previous print job? That would account for the high number of cleanings; most print jobs are a few pages, at most.

    En passant, I found some totally unofficial ink cartridge capacity numbers:

    • Standard T078x: 7 ml @ $13 = $1857 / liter
    • Large T077x: 11 ml @ $20 = $1818 / liter

    [Update: corrected typo from ml to liter]

    Ain’t that impressive? I love the savings they give you with higher-capacity cartridges …