The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Tag: Repairs

If it used to work, it can work again

  • Delta Model 1400 Shower Faucet Knob Insert

    Delta Model 1400 Shower Faucet Knob Insert

    Having just replaced the shower faucet cartridge, the knob insert (probably from 1998, according to a label on the shower stall) could also use some improvement:

    Delta 1400 Shower Faucet knob insert - front
    Delta 1400 Shower Faucet knob insert – front

    That oblong blue tint is water. The shattered sections formerly had small fingers holding the insert into the knob:

    Delta 1400 Shower Faucet knob insert - rear
    Delta 1400 Shower Faucet knob insert – rear

    Pry the aluminum disk out of the insert and scan it:

    Delta Shower Faucet - label scan
    Delta Shower Faucet – label scan

    There is no feature in the knob to capture the semicircular notch at the arrow tip, so the disk can rotate as it pleases. I think the arrow should point to the OFF label on the bezel when the water is turned off, but who knows?

    Import it into Inkscape, whereupon it becomes obvious the printed legend is not centered on the disk, lay suitable construction lines & circles, then draw similar shapes:

    Delta Shower Faucet - Inkscape layout
    Delta Shower Faucet – Inkscape layout

    I located the circles at the Inkscape page corner to put their center at the (0,0) origin with the arrow pointed along the X axis to simplify importing it into OpenSCAD.

    The three useful graphic features go on separate layers so OpenSCAD can treat them as separate objects:

    Delta Shower Faucet - Inkscape layers
    Delta Shower Faucet – Inkscape layers

    Build the overall insert shape in OpenSCAD:

    difference() {
      union() {
        tube(Insert[LENGTH],id=Insert[ID],od=Insert[OD],anchor=BOTTOM) position(TOP)
          cyl(FaceThick,d=Insert[OD],anchor=TOP);
      }
      zrot(KnobAngle)
        down(Protrusion)
          cube([2*Insert[OD],IndexWidth,Insert[LENGTH] - FaceThick + Protrusion],anchor=BOTTOM);
    }
    

    The KnobAngle rotation comes from the angle of the features inside the knob that locate the insert, which are aligned horizontally here, but at about 30° when the knob is installed on the faucet :

    Delta 1400 Shower Faucet knob - insert recess features
    Delta 1400 Shower Faucet knob – insert recess features

    The knob shined up surprisingly well for being three decades old; that photo is as-found.

    Import the Inkscape graphics into OpenSCAD and align them an itsy above the top of the insert structure to prevent Z fighting without triggering the slicer into adding another layer:

    up(Insert[LENGTH] - LabelThick + 0.01)
      color("DarkSlateGray")
        linear_extrude(LabelThick)
          import(LabelFN,center=false,layer="Angle Indicator");
    up(Insert[LENGTH] - LabelThick + 0.01)
      color("Red")
        linear_extrude(LabelThick)
          import(LabelFN,center=false,layer="Hot Arc");
    up(Insert[LENGTH] - LabelThick + 0.01)
      color("Blue")
        linear_extrude(LabelThick)
          import(LabelFN,center=false,layer="Cold Arc");
    
    

    Those three shapes must be handled separately, lest OpenSCAD combine them into one thing that PrusaSlicer won’t recognize as distinct shapes. There’s no need to subtract them from the main insert shape, but getting separate colors to come out right is definitely not straightforward.

    Which looks like this, with cheerful colors that need not correspond to the printer filaments:

    Delta Shower Faucet Insert - solid model
    Delta Shower Faucet Insert – solid model

    Normally I have a set of Build transformations to orient the thing for printing, but doing a simple rotation to put the top down on the platform also blows away the separate nature of the graphics.

    I use the EIA color code sequence in PrusaSlicer so I can identify the filament number by eye:

    Shower Fauce Knob Insert - PrusaSlicer preview
    Shower Fauce Knob Insert – PrusaSlicer preview

    A little while later:

    Delta 1400 Shower Faucet knob insert - installed
    Delta 1400 Shower Faucet knob insert – installed

    The insert is a loose fit in the knob, held in place by good double-sided foam tape to the screw securing the knob. I decided to not bother with little fingers, because I loves me some simple removable adhesive action.

    Yeah, you can buy an entire replacement knob for ten bucks, but where’s the fun in that?

    The OpenSCAD source code as a GitHub Gist:

    // Delta shower faucet knob insert
    // Ed Nisley – KE4ZNU
    // 2025-08-09
    include <BOSL2/std.scad>
    /* [Hidden] */
    HoleWindage = 0.2;
    Protrusion = 0.01;
    NumSides = 4*3*4;
    $fn=NumSides;
    ID = 0;
    OD = 1;
    LENGTH = 2;
    LabelFN = "Shower Fauce Knob Insert.svg";
    LabelThick = 0.8;
    KnobAngle = 30; // horizontal to index features
    IndexWidth = 2.5; // slot to fit knob locating features
    Insert = [33.5,37.7,7.0]; // slides into knob
    FaceThick = 1.6;
    //———-
    // Construct it in the obvious orientation
    // Flip it in the slicer to preserve the artwork for separate filaments!
    difference() {
    union() {
    tube(Insert[LENGTH],id=Insert[ID],od=Insert[OD],anchor=BOTTOM) position(TOP)
    cyl(FaceThick,d=Insert[OD],anchor=TOP);
    }
    zrot(KnobAngle)
    down(Protrusion)
    cube([2*Insert[OD],IndexWidth,Insert[LENGTH] – FaceThick + Protrusion],anchor=BOTTOM);
    }
    // Must be handled separately to produce separate objects for different filaments
    up(Insert[LENGTH] – LabelThick + 0.01)
    color("DarkSlateGray")
    linear_extrude(LabelThick)
    import(LabelFN,center=false,layer="Angle Indicator");
    up(Insert[LENGTH] – LabelThick + 0.01)
    color("Red")
    linear_extrude(LabelThick)
    import(LabelFN,center=false,layer="Hot Arc");
    up(Insert[LENGTH] – LabelThick + 0.01)
    color("Blue")
    linear_extrude(LabelThick)
    import(LabelFN,center=false,layer="Cold Arc");

  • Polymaker PolyDryer Desiccant: Trust, But Verify

    Polymaker PolyDryer Desiccant: Trust, But Verify

    The startup ritual for a PolyDryer box’s humidity meter includes:

    • Opening a small sealed bag containing …
    • The DO NOT EAT desiccant, to be cut open and …
    • Poured into the meter box

    Which looks like this:

    Polydryer - 14 pctRH - meter - white PETG
    Polydryer – 14 pctRH – meter – white PETG

    However, the desiccant packets for the most recent pair of boxes (intended to simplify changing the desiccant in the collection feeding the MMU3 atop the Prusa MK4 3D printer) produced this:

    Polydryer - as-received desiccant
    Polydryer – as-received desiccant

    The silica gel in the left cup looks OK-ish, maybe a little dark, but the fresh-from-the-bag beads in the right cup are crying out for regeneration after having adsorbed about all the water vapor they can.

    If you were using that silica gel in its original DO NOT EAT bag, where you can’t see what it’s telling you, you might wonder why it wasn’t doing such a great job of drying the box + filament. The same could happen with a bag of non-indicating gel, along the lines of what I was using a decade ago.

    So I dumped both in the Needs Rgeneration bottle and filled both meters with 25 g of fresh silica gel.

  • Bicycle Mobile Rebuild

    Bicycle Mobile Rebuild

    A long-lost repair finally made it to the top of the list:

    Bicycle Mobile - bottom view
    Bicycle Mobile – bottom view

    The original string had long since rotted out, but everything else was in a plastic bag just waiting for this occasion.

    The colorful cylinders are stacks of laser-cut 6 mm disks with a 2 mm hole, held to the wire & string with a tiny dot of high-viscosity cyanoacrylate glue at each end:

    Bicycle Mobile - detail
    Bicycle Mobile – detail

    The disks came from acrylic leftovers:

    Bicycle Mobile - laser-cut acrylic
    Bicycle Mobile – laser-cut acrylic

    The motion you can’t see makes the shiny bikes much more visible out there:

    Bicycle Mobile - side view
    Bicycle Mobile – side view

    The string came from dismantled badge reels providing spiral springs for the auto-retracting spools in the PolyDryer boxes.

    The weight ball had a 2 mm hole filled by a wood plug which I cleaned out piecemeal with a 1.5 mm drill bit in a pin vise; a short length of wood skewer holds the new string in place.

    Because the upper arms support more weight, their disk stacks need fewer disks for the same leverage. The original mobile had (at most) four 6 mm chromed plastic balls at each level, so I started with eight 3 mm disks, adjusted the stack length as needed, glued them in place, then removed the surplus disks by crushing them with a Vise-Grip.

    I should rip off the design (“© otagiri 1979”) to build another with recumbent bikes.

  • Solar Garden Light

    Solar Garden Light

    I salvaged a solar garden light from the Vassar Community Gardens midden heap and stripped it down:

    Solar garden light - internal
    Solar garden light – internal

    The single IC is a YX805 “solar lawn light boost control chip” and the resistor-like thing is a 82 µH inductor setting a 13 mA input current.

    Cleaning off some minor corrosion, charging the NiMH cell, and soldering an amber LED onto the pigtail wire brought it back to life.

    It’s now perched on the porch railing where it catches some afternoon rays:

    Solar garden light - deployed
    Solar garden light – deployed

    Maybe we can think of something better for it to do …

  • Sewing Notions Drawer Pull Rethreading

    Sewing Notions Drawer Pull Rethreading

    A small sewing notions cabinet, once my mother’s, now holds some of Mary’s supplies and, a few days ago, had one of its drawer pulls fall off. While preemptively tightening all the screws, I found one no longer held onto its pull:

    Notions drawer pull - parts
    Notions drawer pull – parts

    They don’t make drawer pulls like that any more!

    As I see things, it can be forgiven for losing its grip after nearly a century.

    Thread the screw in as far as it will go and lay the pull flat on the bench vise anvil:

    Notions drawer pull - hammering setup
    Notions drawer pull – hammering setup

    A few gentle whacks with a pin punch on top and bottom, plus a tap on each side, compressed the pull’s remaining threads around & into the screw:

    Notions drawer pull - reshaped
    Notions drawer pull – reshaped

    Put it back in its drawer, snug the screw, and it’s all good.

    That should suffice for at least the remainder of its first century …

  • Dutchess Rail Trail: Brush Trimming & Pruner Repair

    Dutchess Rail Trail: Brush Trimming & Pruner Repair

    The bushes & trees along the Dutchess Rail Trail were reaching out to touch us again, so I took some slow rides with many stops.

    Maple Oak trees along Page Park Drive:

    DCRT Brush Trimming - oak - 2025-07
    DCRT Brush Trimming – oak – 2025-07

    Blackthorn encroaching through the fence at Overocker:

    DCRT Brush Trimming - blackthorn - 2025-07
    DCRT Brush Trimming – blackthorn – 2025-07

    A tree somebody tossed down the trail bank near Morgan Lake:

    DCRT Brush Trimming - discarded tree - 2025-07
    DCRT Brush Trimming – discarded tree – 2025-07

    The slide lock on my trusty rehabilitated Fiskars bypass pruner worked loose and began sliding into the LOCK position when held overhead, then fell apart during disassembly:

    Fiskars pruner - lock rebuild
    Fiskars pruner – lock rebuild

    The lock now consists of:

    • An M4 × 12 mm nut from a Chicago Screw that exactly matched the 5 mm OD cylinder passing through the pruner body
    • A laser-cut fluorescent acrylic disk for thumb grippiness
    • A washer just because
    • An M4 hex-head screw
    • A dab of Loctite bonding screw to nut

    Clean the blades with alcohol and it’s ready for the rest of the season.

    I should have put a wave washer in the stack for some springiness, but it works surprisingly well for what it is.

    Now: discover how long acrylic lasts out there in the wild.

    Update: Yeah, the lock needed a wave washer for more friction, which became apparent after the first overhead branch.

  • Newmowa NP-BX1: 2025 Batteries

    Newmowa NP-BX1: 2025 Batteries

    A new sextet of NP-BX1 batteries for the Sony AS-30V helmet camera arrived:

    Newmowa NP-BX1 - 2022 vs 2025
    Newmowa NP-BX1 – 2022 vs 2025

    The traces:

    • Blue = 2025 batteries
    • Red = 2022 batteries when new

    I don’t know what the bump in the middle of the new battery discharge curve means. Something weird in the chemistry, I suppose. Getting good batteries from Amazon surely remains a crapshoot and I now have four chargers.

    Recharging all six batteries required 5488 mA·hr, just over 900 mA·hr apiece. Running the camera on a one-hour bike ride burns 600-ish mA·hr, so that’s comforting.

    Comparing the new results with the 2022 batteries tested last month:

    NP-BX1 - Newmowa 2022 in 2025-06
    NP-BX1 – Newmowa 2022 in 2025-06

    The upper traces appear in red in the first plot, the lower curves come from three years of use.

    I’ll deploy the two best 2022 batteries (D and F) in the SJCAM M20 keeping watch from the Forester’s dashboard.