The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Tag: Improvements

Making the world a better place, one piece at a time

  • Cheap HD USB Camera: Base Disassembly

    Cheap HD USB Camera: Base Disassembly

    A brace of cheap HD USB cameras may improve the scenery around here during video meetings. They were $16, marked down from an absurd $130:

    HD USB Camera price history
    HD USB Camera price history

    Some poor schlubs certainly dropped more than twice the price of a Genuine Logitech camera on these critters, but a nearly total lack of demand must have had some effect.

    They do take their stylin’ cues from Logitech, although the speckled pattern on a shiny plastic sheet is amusing:

    HD USB Camera - styling vs Logitech C920
    HD USB Camera – styling vs Logitech C920

    Unsurprisingly, the lens is fixed / manual focus. What looked like focus rings were in different positions on the two cameras:

    HD USB Camera - lens focus notches
    HD USB Camera – lens focus notches

    It turns out the rings were not glued in place, perhaps because they have absolutely no effect on the camera’s focus. Maybe there’s another camera model where they rotate the lens in a threaded socket, but this ain’t that.

    The front panel has three pores:

    • A red Power LED is always on when it’s plugged in
    • A green On the air LED lights up when the camera is selected; I have no idea what the WiFi-ish glyph is supposed to represent
    • The “advanced noise canceling microphone” sits behind a pore offscreen left; the claim seems dubious.

    Because these may go into smaller spaces, I dismantled the base to see what was involved. Most of the screws lie underneath thin foam sheets:

    HD USB Camera - ball mount interior
    HD USB Camera – ball mount interior

    The lower plate has a tripod mount and a folding bracket:

    HD USB Camera - baseplate interior
    HD USB Camera – baseplate interior

    The camera body has a ball mount with a few degrees of movment:

    HD USB Camera - ball mount detail
    HD USB Camera – ball mount detail

    Reassembled and stuck inside the laser cabinet with some good double-sided foam tape, it definitely produces a better image than the previous camera:

    Platform camera view
    Platform camera view

    Whatever noise cancellation the mic may provide is irrelevant in there: nobody’s listening.

  • OMTech Laser Cutter: Custom Air Fitting Wrench

    OMTech Laser Cutter: Custom Air Fitting Wrench

    Changing the lens on the laser requires unscrewing the nozzle after removing the assist air fitting that collides with the focus pen holder:

    Laser head - assist air vs focus pen
    Laser head – assist air vs focus pen

    All the 12 mm open-end wrenches in my Drawer o’ Spare Wrenches being much too large, I finally got around to making a custom wrench:

    Air fitting wrenches
    Air fitting wrenches

    The plywood wrench came from a traced scan of a similar wrench, then adjusting the jaw opening to 12 mm. It served to verify the overall shape & size, then became a template for the real wrench atop a scrap of 1/8 inch aluminum sheet with flaking paint.

    Some bandsawing and filing later:

    Air fitting wrench - at nozzle
    Air fitting wrench – at nozzle

    A little wrench makes swapping the lens somewhat less tedious, which is a Good Thing™.

    Protip: Remember to adjust the Focus Distance by the difference between the two lenses.

  • Ortur YRC-1 Chuck: Tube Reinforcement

    Ortur YRC-1 Chuck: Tube Reinforcement

    Tuck a neatly laser-cut disk into a flimsy cardboard tube:

    Ortur YRC-1 - cardboard tube reinforcement
    Ortur YRC-1 – cardboard tube reinforcement

    Put a big conical center in the tailstock:

    Ortur Chuck Rotary conical center - front
    Ortur Chuck Rotary conical center – front

    Whereupon the tube remains nicely tubular on both ends and aligned along the chuck axis:

    Ortur YRC-1 - chucked cardboard tube
    Ortur YRC-1 – chucked cardboard tube

    Which is why you save all that scrap material …

    Yes, it’s the core from a toilet paper roll, which is way cheaper than burning through tumblers / mugs / shot glasses / whatever while figuring this stuff out.

  • Prusa MK4 Nozzle Tool Mod

    Prusa MK4 Nozzle Tool Mod

    Contemplating a 0.8 mm nozzle to print more-transparent things, I ran off an Official MK4 Nozzle Replacement Tool to stabilize the heater block while applying a wrench to the nozzle:

    Prusa MK4 Nextruder Tool - without inlet scoop
    Prusa MK4 Nextruder Tool – without inlet scoop

    For obvious reasons, it doesn’t fit with the inlet scoop I installed as part of blinging the MK4:

    Prusa MK4 Nextruder Tool - inlet scoop installed
    Prusa MK4 Nextruder Tool – inlet scoop installed

    Removing the scoop is a matter of removing those two cap screws, which is no big deal, but a little flush-cutter action made that problem Go Away forever:

    Prusa MK4 Nextruder Tool - inlet scoop mod
    Prusa MK4 Nextruder Tool – inlet scoop mod

    Yeah, I should have modified the solid model. Maybe next time.

    A version of the tool fits extruders covered with an Official Prusa Silicone Sock thermal insulator, but they were out of stock when I was in the mood. My heater wears a knockoff sock:

    Prusa MK4 Nextruder Tool - silicone sock vs nozzle
    Prusa MK4 Nextruder Tool – silicone sock vs nozzle

    Unlike the Official Sock, there’s no way to get a wrench on the nozzle with that one installed, but removing the sock is no big deal.

    I apparently installed the nozzle / heater block slightly higher than specified, so the tool didn’t quite fit. Loosening those two thumbscrews and lowering the nozzle to fit the tool solved that problem. Fortunately, the automatic bed leveling routine corrects for nozzle height differences on the fly.

    The scoop is back on the fan, the sock once again surrounds the heater, and I can easily swap in the 0.8 mm nozzle when the time comes.

  • Olive Oil Bottle Cap Covers

    Olive Oil Bottle Cap Covers

    We buy olive oil in large bottles, then fill smaller bottles for easier handling. The caps on those bottles were never meant to last as long as we keep them and the thin, deeply drawn aluminum tends to crack after a while.

    So I conjured a cap cover from the vasty digital deep:

    Olive Oil Cap - solid model
    Olive Oil Cap – solid model

    Which looks exactly like you’d expect when printed in black PETG:

    Olive oil bottle cap - details
    Olive oil bottle cap – details

    You can see the raggedy edge of the original cap just inside the cover’s rim. A snippet of double-sided tape holds the cover in place, after de-oiling the cap with alcohol.

    Having gotten one to fit, I made enough for All The Bottles:

    Olive oil bottle cap - installed
    Olive oil bottle cap – installed

    Only two of those see regular service: one in use and another filled when the first is nearly empty. The remaining pair huddle in the back of the shelf against future need.

    The OpenSCAD source code produces those fancy knurls with BOSL2’s textured cyl() :

    // Shower soap dish
    // Ed Nisley - KE4ZNU
    // 2026-01-17
    
    include <BOSL2/std.scad>
    
    /* [Hidden] */
    
    HoleWindage = 0.2;
    Protrusion = 0.1;
    NumSides = 5*3*4;
    
    $fn=NumSides;
    
    ID = 0;
    OD = 1;
    LENGTH = 2;
    
    WallThick = 1.0;
    BaseThick = 2.0;
    
    CapOD = 36.0;
    
    CoverOA = [CapOD,CapOD + 2*WallThick,20.0 + BaseThick];
    
    //----------
    // Build it
    
      render()
        difference() {
          cyl(BaseThick,d=CoverOA[OD],chamfer1=1.0,anchor=BOTTOM) position(TOP)
            cyl(CoverOA[LENGTH] - BaseThick,d=CoverOA[OD],
                texture="trunc_pyramids",tex_size=[2,6], style="convex",
                anchor=BOTTOM);
          up(BaseThick)
            cyl(CoverOA[LENGTH],d=CoverOA[ID],anchor=BOTTOM);
        }
    
    
    
  • OMTech Laser Cutter vs. Ortur YRC-1 Rotary: Job Checklist

    OMTech Laser Cutter vs. Ortur YRC-1 Rotary: Job Checklist

    The process of switching the laser cutter from “normal” operation to the Ortur YRC-1 rotary and back again requires a checklist:

    Ortur YRC-1 Setup Checklist - installed
    Ortur YRC-1 Setup Checklist – installed

    Which looks like this:

    Ortur YRC-1 Setup Checklist
    Ortur YRC-1 Setup Checklist

    The same thing as a PDF will be more printable or readable.

    Previous posts cover what goes into making it work:

    Notes:

    • Always disable the rotary’s stepper driver before connecting or disconnecting its cable.
    • The Ortur YRC-1 rotary has a pulley ratio of 1:3, so the step/rev value is three times the DIP switch setting on the stepper driver. For this setup, 1600 → 4800 step/rev.
    • The honeycomb frame is a parallelogram, not a rectangle. I align the cardboard baffle / fixture to the bottom edge of the frame and the rotary to the bottom edge of the fixture opening, but your machine will be different. The angular alignment may not be off by enough to matter, but consistency is a virtue.
    • The Rotary.lbset and Linear.lbset files live on a file server with daily backups. Such backups will come in handy when you inadvertently overwrite one of those files with the other one. Trust me on this.
    • The Rotary.lbset file does not have Rotary Mode enabled, because the KT332N does not home the Y axis in that mode. If your rotary lacks a home switch, then it doesn’t matter and you’re on your own.
    • The KT332N controller has a [Reset] button that allegedly does a power-on reset and reloads all the changed Machine Settings. This sometimes does not work as expected: power-cycling the controller is the only way to be sure.
    • The autofocus operation must hit the focus pad, which can be ensured by positioning the pen near the pad, jogging the platform a few millimeters under the pen, tweaking X and the gantry while peering down parallel to the pen, then doing the autofocus.
    • The focus pad has a crosshair clearing the chonky Ortur 3-step jaws, but I set the controller’s [Origin] at the foot of the pad’s base for more elbow room.
    • The Z axis distance field in LightBurn’s Move window does not accept formulas, so you must divide the workpiece diameter by two. Using a focus stick to verify the ensuing nozzle-to-workpiece distance is a Good Idea™.
    • The LightBurn Job Origin dot must be on the top row, because the KT332N does not go into regions with negative coordinates. With the chuck on the left and the [Origin] just to its right, the upper left dot locks the LightBurn selection to the physical limits.
    • Selecting [Use Selection Origin] puts the Job Origin at the upper left (per the dot) of whatever you’ve selected, not everything on the LightBurn workspace. [User Origin] then locks the selection to the [Origin] set on the controller.

    As the saying goes, it works for me …

  • Translucent Soap Dishes

    Translucent Soap Dishes

    A SquidWrench meeting discussion about printing transparent objects prompted me to conjure a soap dish from the vasty digital deep:

    Shower Soap Dish - solid model
    Shower Soap Dish – solid model

    They’re all done in “natural” PETG with sufficient variations in speed, temperature, extrusion multiplier, and fill pattern to stock the shower & tub:

    Translucent soap dishes
    Translucent soap dishes

    The single-thread sidewalls came out reasonably translucent in all the variations, but the baseplate remained stubbornly white-ish, even at 20 mm/s and 250 °C with 100% infill. The seams where the extruder retracts and lifts to the next layer remain conspicuous, with a scarf joint forming the white slab in the left-rear dish.

    Quite a while ago, I’d considered making soap dishes with shattered-glass bottoms, but came to my senses. These have some key advantages:

    • Exactly the right size for narrow shower shelves
    • Light enough to not damage anything when it inevitably falls off
    • Reasonably unbreakable when that happens
    • Easily replaced

    They’re also test pieces for the whole transparency thing, so it’s all good.

    The OpenSCAD source code as a GitHub Gist:

    // Shower soap dish
    // Ed Nisley – KE4ZNU
    // 2026-01-13
    include <BOSL2/std.scad>
    /* [Hidden] */
    HoleWindage = 0.2;
    Protrusion = 0.1;
    NumSides = 3*3*4;
    $fn=NumSides;
    ID = 0;
    OD = 1;
    LENGTH = 2;
    WallThick = 0.6;
    BaseThick = 2.0;
    //DishOA = [80.0,40.0,20.0]; // standing used Dove
    DishOA = [90.0,50.0,30.0]; // standing Dove
    //DishOA = [100.0,65.0,30.0]; // half-bar
    DishTaper = [10.0,10.0];
    CornerRadius = 15.0;
    DrainOA = [10.0,DishOA.y,3.0];
    DrainOC = DishOA.x/3;
    //———-
    // Build it
    difference() {
    union() {
    linear_extrude(BaseThick)
    rect([DishOA.x,DishOA.y] – DishTaper,rounding=CornerRadius);
    rect_tube(DishOA.z,wall=WallThick,
    size1=[DishOA.x,DishOA.y] – DishTaper,size2=[DishOA.x,DishOA.y],
    rounding=CornerRadius,anchor=BOTTOM);
    }
    for (j=[-1,1])
    right(j*DrainOC/2)
    up(BaseThick)
    cuboid(DrainOA,rounding=1.0,anchor=BOTTOM+BACK);
    }