The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Category: Electronics Workbench

Electrical & Electronic gadgets

  • CO₂ Laser Cutter: Icemaker as Water Chiller

    CO₂ Laser Cutter: Icemaker as Water Chiller

    A discussion on the LightBurn forums prompted me to pick up a cheap icemaker to see how it works as a laser water chiller:

    Silonn icemaker - installed
    Silonn icemaker – installed

    It has a drain hole in the bottom that made this whole thing practical, because a PVC pipe hot-melt-glued atop the drain maintains the water level in the reservoir without any further attention:

    Silonn icemaker - drain pipe
    Silonn icemaker – drain pipe

    The water line from the laser, formerly run directly into the bucket, now goes into the reservoir and through the drain into the bucket. The bucket holds about five gallons of water, with the pump submerged in the bottom.

    The icemaker pumps water from the reservoir into the little icemaker tray, freezes nine little ice bullets, and scrapes them into the reservoir:

    Silonn icemaker - new ice dump
    Silonn icemaker – new ice dump

    It does that about every eight minutes.

    A plot of water temperature vs. time shows what happens:

    Silonn icemaker - cooling water plot
    Silonn icemaker – cooling water plot

    It’s as exponential as you could want.

    The ice bullets drop into the reservoir and melt there, the cooled water continuously flows into the bucket, and mixes with the rest of the water before being pumped back through the laser. As a result, there are no sudden water temperature changes and the laser remains perfectly happy.

    Some numbers for an idea of the cooling capacity:

    Freezing 28 pounds = 12.7 kg of ice a day (which, in normal use, would require me to babysit the thing overnight to empty the ice and refill the reservoir) works out to:

    12.7 kg × 334 kJ/kg = 4.2 MJ

    Spread across 24 hours, that’s 49 W of cooling power. There will be a bit more going into the chilled water surrounding the bullets, but most of the energy goes into the water-to-ice phase change.

    Run another way, 5 gallons of water is 42 pounds. The initial cooling slope looks like 2 °C = 3.6 °F in 2 hr, which is 75 BTU/hr = 23 W. However, the water is cooling the laser (which was inert except for one brief cut) as well as the basement, plus (most importantly) there’s a water pump dissipating 20 W submerged in the bucket, so the icemaker is delivering at least 43 W, which is pretty much its rated performance.

    It’s obviously incapable of keeping up with a laser doing full-time production work, but for my simple needs it seems better than dunking ice packs in the bucket.

    More study (and maybe getting an air-cooled water pump) is in order …

    The original data:

    Silonn icemaker - cooling water data
    Silonn icemaker – cooling water data
  • CO₂ Laser Cutter: Improved PIN-10D Photodiode Filter Holder

    CO₂ Laser Cutter: Improved PIN-10D Photodiode Filter Holder

    Anything would be better than just taping some gel filters to the front of the bare photodiode package:

    Laser output - photodiode kludge
    Laser output – photodiode kludge

    Right?

    I heaved the slab of ½ inch black acrylic left over from the Totally Featureless (WWVB) Clock into the laser cutter and, two passes at 90% power later, had a somewhat lumpy 32 mm donut with an 11 mm hole in the middle. Because acrylic is opaque to the IR light from a CO₂ laser (which is why it cuts so well) and black acrylic is opaque to visible light (which is what the photodiode is designed for), this is at least as good as an aluminum housing and much easier to make.

    Chuck the donut into Tiny Lathe and bore out the hole:

    PIN-10D photodiode filter holder - boring ID
    PIN-10D photodiode filter holder – boring ID

    When it’s a snug fit to ½ inch brass tube (about the same size as the photodiode’s active area), flip it around, and bore the other size out to fit the photodiode case.

    Ram the tube in place, grab the large recess, and center the tube:

    PIN-10D photodiode filter holder - centering snout
    PIN-10D photodiode filter holder – centering snout

    That’s the chuck-in-chuck trick I used with the coasters, because the neither of the larger four-jaw chucks close far enough to get their inside jaws inside those little holes.

    [Edit: Got that backwards: I bored the big recess first.]

    Skim most of the OD down, then, because I am a dolt forgot to put a spacer in there, flip it around again, get it running true (the chuck aligns the flat side):

    PIN-10D photodiode filter holder - turning OD
    PIN-10D photodiode filter holder – turning OD

    Then skim the rest of the OD to clean it up.

    Cut some filter gels to fit inside the recess:

    PIN-10D photodiode filter holder - filter disc cutting
    PIN-10D photodiode filter holder – filter disc cutting

    Even though they’re pretty much transparent to thermal IR, a focused IR laser beam cuts them just fine. The little tab at 6 o’clock (remember round clocks with hands?) keeps the cut circle from falling out.

    Drill & tap for an M3 setscrew to hold the photodiode in place:

    PIN-10D photodiode filter holder - parts
    PIN-10D photodiode filter holder – parts

    Put them all together:

    PIN-10D photodiode filter holder - assembled
    PIN-10D photodiode filter holder – assembled

    I must conjure a better mount for the thing, because this is way too precarious:

    PIN-10D photodiode filter holder - test install
    PIN-10D photodiode filter holder – test install

    Early results suggest it works better than the previous hack job, without ambient light sneaking around the edges of the filter pack.

  • CO₂ Laser Cutter: Random Dots On Engravings

    CO₂ Laser Cutter: Random Dots On Engravings

    The LightBurn forums have many despairing posts from folks with CO₂ lasers sprinkling random dots all over their engravings:

    Well, as it turns out, engraving lots of small test patterns on scrap acrylic and peering at the results revealed the same problem:

    Engraving Target - stray laser pulse - sizes
    Engraving Target – stray laser pulse – sizes

    The test patterns were engraved at various power levels, which was the whole point of the exercise: I was looking at the current waveforms, rather than the acrylic. Despite that, the result should be solid blocks with no speckles in between, which is not quite what happened.

    For reference, the test pattern:

    Pulse Timing Pattern - 1 mm blocks
    Pulse Timing Pattern – 1 mm blocks

    An early hint came from a trace captured while looking at an entire scan line across the pattern:

    Tube Current - gray bars - 20pct - RMS pulse - 100 ma-div
    Tube Current – gray bars – 20pct – RMS pulse – 100 ma-div

    See that isolated spike left of center, where the L-ON signal (magenta trace) is high? That shouldn’t be possible.

    Setting the scope to trigger when the L-ON signal is high (= laser power supply disabled) and the tube current is more than a few milliamps (= laser beam active) captures those errant dots.

    Sometimes a spurious pulse happens just after L-ON goes high to disable the HV output:

    Tube Current - 20pct - glitch risng edge 30mA trig - 10 ma-div
    Tube Current – 20pct – glitch risng edge 30mA trig – 10 ma-div

    The X axis stepper DIR signal (yellow trace) shows the laser was scanning right-to-left, so the glitch will be just to the left of the 2 mm block in the pattern. In point of fact, it’s about ¾ of the way down the right-hand column:

    Engraving Target - stray laser pulses
    Engraving Target – stray laser pulses

    A closer look shows a distinct circular pit at the end of the line:

    Engraving Target - stray laser pulse - detail
    Engraving Target – stray laser pulse – detail

    The two left-to-right lines bracketing that line also show how the high-intensity pulses affect the laser beam startup intensity during a scan line.

    Sometimes the glitches happen quite some time after the laser turns off:

    Tube Current - 20pct - glitch 30mA trig - 10 ma-div
    Tube Current – 20pct – glitch 30mA trig – 10 ma-div

    Sometimes they’re in the middle of what should be a blank space:

    Tube Current - 20pct - glitch pulse offscale - 10 ma-div
    Tube Current – 20pct – glitch pulse offscale – 10 ma-div

    The glitches are not always full-scale events. The two nearly invisible pulses just to the right of the block (bottom green trace) make the smaller dots you can see on the targets:

    Tube Current - 20pct - glitch pulses - 10 ma-div
    Tube Current – 20pct – glitch pulses – 10 ma-div

    As far as I can tell, spurious dots happen most often with current levels around 20% PWM, less at 10% PWM, and rarely above 30% PWM. I think it has something to do with the chaotic spikes that the power supply produces at lower currents, instead of the relatively stable outputs for higher currents.

    Although these measurements are for the replacement HV supply I got when the original supply failed, I saw similar chaotic waveforms with a Cloudray HV supply I bought as a backup. Given that other people have reported similar random dots with many other machines & power supplies, I think these scope traces show where the dots come from: all the power supplies behave the same way.

    The only way to reduce the number of speckles is to use higher power, which will require higher scanning speeds to achieve similar results. Unfortunately, higher speeds give the power supply less settling time, so there may be no good answer.

    I haven’t been able to find any “official” schematics for the HV laser power supplies shipped in typical lasers (there are many terminal wiring diagrams), so I have no idea how the L-ON signal controls the output current. Apparently the oscillating chaos inside the power supply occasionally punches through the output switch, which isn’t too surprising given the voltage and power levels in there.

    If nothing else, the acrylic test pieces look pretty on the microscope positioner:

    Edge-lit engraving test target
    Edge-lit engraving test target

    In the usual techie sort of way …

  • CO₂ Laser Tube Current: Light Output

    CO₂ Laser Tube Current: Light Output

    Just to see what the laser tube’s output looks like, I aimed a large photodiode toward the laser tube output:

    Laser output - photodiode kludge
    Laser output – photodiode kludge

    That’s a venerable PIN-10AP photodiode minus its green human-eye filter, with an IR-pass / visible-block set of gel filters taped on the front to knock out everything except IR scattered from the laser’s snout. Nothing sits in the direct beamline.

    The alert reader will kvetch about a CO₂ laser running at 10.6 µm, an order of magnitude off the right end of the photodiode response curve graphs, through stage filter gels not even pretending to have optical specs. Hey, stage light filters are utterly transparent to thermal IR and there’s plenty of invisible light to go around, so maybe this will work.

    The coaxial cable trails off to the scope’s 1 MΩ input, so, although the photodiode does not operate in true zero-bias mode, I can at least look at its photocurrent driving a voltage into the scope input.

    Surprisingly, the lashup kinda-sorta works well enough to show the laser’s light output tracking the tube’s current:

    Tube Current - 90pct - IR diode 50mV-div - tube 20 ma-div
    Tube Current – 90pct – IR diode 50mV-div – tube 20 ma-div

    That’s a manual 20 ms pulse at 90% PWM, with the tube current at 20 mA/div. The oscillations at the start of the current pulse seem to excite the tube enough for the light output to stabilize when the real current comes along. I cannot tell if the exponential tail-off beyond the pulse is due to excited molecules cooling off in the laser tube or the poor photodiode recovering from Too. Much. Light. It. Burns.

    The response is a little shakier at 50% PWM:

    Tube Current - 50pct - IR diode 50mV-div - tube 20 ma-div
    Tube Current – 50pct – IR diode 50mV-div – tube 20 ma-div

    Dropping to 30% PWM requires more time to get up and running:

    Tube Current - 30pct - IR diode 50mV-div - tube 20 ma-div
    Tube Current – 30pct – IR diode 50mV-div – tube 20 ma-div

    And 10% PWM looks downright awful:

    Tube Current - 10pct - IR diode 10mV-div - tube 20 ma-div
    Tube Current – 10pct – IR diode 10mV-div – tube 20 ma-div

    Although the vertical scale for the photodiode trace doesn’t mean much, it’s obvious that the IR output matches the current input, right down to the littlest pulses. Sliding a bit of brass shimstock between the filter gels eliminates nearly all the photodiode output, so it’s not electrical noise. I think the long tail really shows the gases cooling off.

    The alert reader will have noted the wee blip over there on the right, 21 ms after the start of the 20 ms long pulse and 4 ms after all those spikes shut off. Yup, the HV power supply can deliver a stray pulse when it’s not supposed to be enabled. More on that in a while.

  • Vintage Acrylic Unwarping

    Vintage Acrylic Unwarping

    Half a year ago, a stash of vintage acrylic sheets emerged from the Outer Darkness into the Shop Light:

    Acrylic Stockpile
    Acrylic Stockpile

    That big yellowed sheet is 9 mm = 3/8 inch thick, with an inch of warp, entirely enough to keep it out of the laser cutter.

    So I cleared some floor space and loaded the sheet with a collection of scrap steel sufficient to bend it the other way:

    Acrylic sheet unwarping
    Acrylic sheet unwarping

    The main weight comes from a perfectly sized snippet of railroad rail, topped off with steel disks, angle iron, and a rugged scissors jack

    The sheet didn’t touch the floor, so the weight kept stress on the plastic and it gradually flowed the other way:

    Mostly unwarped acrylic sheet
    Mostly unwarped acrylic sheet

    The center remains 5 mm higher than the edges and, given that cold-flowing is at best an exponential process, I recently declared victory and added it to the stockpile. I’ll gnaw off small pieces for any given project, so the remaining warp won’t matter.

    The rule of thumb says a CO₂ laser cutters needs 10 W per millimeter of acrylic, so my 60 W laser will be somewhat underpowered. Two or three passes should suffice and, for sure, nobody will kvetch about edge quality.

  • CO₂ Laser Tube Current: Time Integral

    CO₂ Laser Tube Current: Time Integral

    With the laser cutter set up as before and the scope set up to calculate the time integral of the tube current, this happens:

    Tube Current - 40pct pattern - integ - 10 ma-div
    Tube Current – 40pct pattern – integ – 10 ma-div

    The trigger is the Boolean AND of the top two traces:

    • DIR signal = low = left-to-right X axis motion
    • L-ON signal = low = laser power supply output enabled

    The bottom trace is the laser tube current at 10 mA/div, which is, conveniently, also the scope vertical axis calibration, so you can read “amp” wherever you see “volt”. The four pulses correspond to a single scan line through the usual test pattern:

    Pulse Timing Pattern - 1 mm blocks
    Pulse Timing Pattern – 1 mm blocks

    Scanning at 250 mm/s, each 1 mm block occupies 4 ms and the 2 mm block on the right is 8 ms long.

    With all that in mind …

    The white line in the scope screenshot is the time integral of the current, scaled at 50 µV·s/div and read as 50 µA·s/div due to the 10 mV/div = 10 mA/div equivalence. The integral is pretty much a straight line up and to the right during each pulse, showing that the power supply delivers a nearly constant average current despite the random-looking spikes in the shorter pulses, the oscillations at the start of the longer pulse, and the reasonably flat section after the current settles down.

    Say it again: Totally did not expect that.

    A closer look at the first pulse of a different line:

    Tube Current - 40pct pattern - integ pulse 1 - 10 ma-div
    Tube Current – 40pct pattern – integ pulse 1 – 10 ma-div

    Today I Learned: The per-division scale of the white integral line is completely bogus in Zoom mode. Although the display still shows 50 µA·s/div (magenta text obscured near the middle), the integral line rises seven divisions. Some fiddling around showed there is no relation between the calibrations of the normal display and those in Zoom mode.

    What is important: seeing the integral as pretty much a straight line with a reasonably constant slope, if you’re willing to ease over the bumps due to the current spikes. The slope of that line (yeah, the derivative of the integral, for a chunky definition of derivative) gives the average tube current.

    Referring to the non-Zoomed trace, the integral rises by about 40 µA·s during each 4 ms pulse (and twice that for the 8 ms pulse), for an average current of 40 µA·s / 4 ms = 10 ma. Having previously established 100% PWM corresponds to 24 mA, 40% of 24 mA = 9.6 mA seems about as close as one might expect.

    This looks less awful than I expected, fer shure.

    More measurements are in order.

  • CO₂ Laser Tube Current: Less Meaningless RMS Pulse Measurements

    CO₂ Laser Tube Current: Less Meaningless RMS Pulse Measurements

    Having established that the RMS value of the huge current spikes at low PWM settings doesn’t amount to anything meaningful, I cranked the AM502 current amp gain to 10 mV/div, re-ran the tests for PWM values from 10% through 99%, and recorded the RMS value of a single line through a square of the same pattern:

    Pulse Timing Pattern - 1 mm blocks
    Pulse Timing Pattern – 1 mm blocks

    Each square is 1 mm on a side and the pattern runs at 250 mm/s, so the laser will be enabled for 4 ms. For example, the test setup shows the result of a pass at 50% PWM:

    Tube Current - 50pct - RMS pulse - 250mm-s - 10ma-div
    Tube Current – 50pct – RMS pulse – 250mm-s – 10ma-div

    The two cursors mark the duration of one block, with the laser current in the bottom trace starting off with the usual off-screen spikes, then settling down to a constant-ish 13-ish mA for the rest of the block. The 13.74 mARMS value (the AM502’s 10 mA/div matches the scope’s 10 mV/div, so you can read mV as mA) includes some part of those spikes (the higher gain clips the tips), but most of it comes from the stable-ish portion.

    The whole measurement set as a slide show for your amusement:

    • Tube Current - 10pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 20pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 30pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 40pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 50pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 60pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 70pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 80pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 90pct - RMS pulse - 250mm-s - 10ma-div
    • Tube Current - 99pct - RMS pulse - 250mm-s - 10ma-div

    When confronted with data points, plot them:

    Tube current - RMS vs PWM graph
    Tube current – RMS vs PWM graph

    Huh.

    I expected the line to pass through the origin, which it most certainly does not. One could make up a story about how the 30% and 40% PWM points are Close Enough to the line to sorta pull the bottom end over to the left a little, but even that doesn’t explain the known-to-be-weird results below 30% PWM.

    A better story might be that 30-ish% PWM produces the minimum current required to fire the laser tube. Operating below that current works, in the sense that the laser produces a beam, but it’s out of spec. Running above that current eventually lets the power supply reach an agreement with the tube as to the operating point.

    As before, those measurements do not account for the reasonably consistent results of scorching some cardboard:

    Pulse Timing Pattern - cardboard - 10 20 30 pct
    Pulse Timing Pattern – cardboard – 10 20 30 pct

    Cardboard is not the best test medium and I now agree RMS isn’t the best measurement.

    More study is indicated …