The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Category: Machine Shop

Mechanical widgetry

  • Hand Shower Mounting Bracket

    Hand Shower Mounting Bracket

    For reasons not relevant here, a hand shower will come in mmm handy for a while in a month or two. The threads on its plastic diverter valve pretty nearly match those on the 70 year old iron pipe in the front bathroom, although the original brass shower head may have been installed by John Henry the Steel-Drivin’ Man.

    In any event, you’re supposed to drill two screw holes in the wall for the holder, which is just not happening. Instead, scan the bottom of the holder and blow out the contrast for the next step:

    Hand Shower bracket - scan
    Hand Shower bracket – scan

    Yes, those holes are off-center in their molded bosses. They’re centered in their front recesses and I cannot imagine how, in this day and age of CAD everything, a designer could misalign the front and the back, but there it is.

    A little cleanup produces a reasonable mask:

    Hand Shower bracket - mask
    Hand Shower bracket – mask

    The holes are centered in the outline, as you’d expect.

    Import it into LightBurn, trace the perimeters, put those vectors on a tooling layer, and hand-draw a much simpler / smoother outline on the cutting layer. One of the vintage acrylic sheets is 1/4 inch thick, just enough for the shortest M4 brass inserts, so wrap the holes around the inserts:

    Hand Shower bracket – LB layout

    Some acrylic adhesive goops the inserts in place, although I’m not convinced it has enough pull strength in those slick holes:

    Hand Shower bracket - mounting plate
    Hand Shower bracket – mounting plate

    When if it fails, I’ll rebuild the plate with an engraved ring around the back of each hole, along the lines of the earrings, and epoxy the inserts in place.

    Double-sided foam tape will eventually stick the holder to the tile above the tub, but finding the proper location requires UX research.

  • Rattlecan Coasters

    Rattlecan Coasters

    Rattlecan spray paint, unlike scribbled markers, produces vivid colors on white chipboard:

    Coaster Assortment
    Coaster Assortment

    Cut the painted sheets cut face-down atop magnetic spikes on the honeycomb platform, with tabs to keep the petals in place and 0.15 mm kerf compensation. A light touch with an Xacto knife severs the tabs, after which the petals press firmly into the frames. Spread yellow PVA wood glue across the bottom disk, align the perimeters and press together, lay parchment paper between the coasters, clamp the stack between plywood sheets, and they emerge perfectly flat the next day.

    They’re too labor-intensive for any economic activity, but I like ’em:

    Coaster assortment
    Coaster assortment

    The pale gray petals in a white frame looks remarkably like the washed-out color scheme on whatever device you’re reading this, doesn’t it?

  • Dell Sound Bar Under-Shelf Mount

    Dell Sound Bar Under-Shelf Mount

    A bedroom rearrangement displaced the Dell Sound Bar attached to the streaming music player from its accustomed perch, so I conjured a mount from the parts bin to hang it from a shelf:

    Dell sound bar mount - installed
    Dell sound bar mount – installed

    The sound bar originally fit below any Dell monitor with the appropriate lugs under the bezel, but a bit of bandsaw work and hand filing produced a reasonable facsimile from an aluminum sheet:

    Dell sound bar mount - plate installed
    Dell sound bar mount – plate installed

    The bar’s plastic bits require a few millimeters of clearance above the sheet, now provided by a matching plywood shape:

    Dell sound bar mount - parts
    Dell sound bar mount – parts

    A trial fit showed all the parts would fly in formation:

    Dell sound bar mount - trial fit
    Dell sound bar mount – trial fit

    A laser-cut cardboard template maintained alignment and spacing while I stood on my head screwing the mount in place.

    All’s well that ends well!

  • CO₂ Laser Cutter: Icemaker as Water Chiller

    CO₂ Laser Cutter: Icemaker as Water Chiller

    A discussion on the LightBurn forums prompted me to pick up a cheap icemaker to see how it works as a laser water chiller:

    Silonn icemaker - installed
    Silonn icemaker – installed

    It has a drain hole in the bottom that made this whole thing practical, because a PVC pipe hot-melt-glued atop the drain maintains the water level in the reservoir without any further attention:

    Silonn icemaker - drain pipe
    Silonn icemaker – drain pipe

    The water line from the laser, formerly run directly into the bucket, now goes into the reservoir and through the drain into the bucket. The bucket holds about five gallons of water, with the pump submerged in the bottom.

    The icemaker pumps water from the reservoir into the little icemaker tray, freezes nine little ice bullets, and scrapes them into the reservoir:

    Silonn icemaker - new ice dump
    Silonn icemaker – new ice dump

    It does that about every eight minutes.

    A plot of water temperature vs. time shows what happens:

    Silonn icemaker - cooling water plot
    Silonn icemaker – cooling water plot

    It’s as exponential as you could want.

    The ice bullets drop into the reservoir and melt there, the cooled water continuously flows into the bucket, and mixes with the rest of the water before being pumped back through the laser. As a result, there are no sudden water temperature changes and the laser remains perfectly happy.

    Some numbers for an idea of the cooling capacity:

    Freezing 28 pounds = 12.7 kg of ice a day (which, in normal use, would require me to babysit the thing overnight to empty the ice and refill the reservoir) works out to:

    12.7 kg × 334 kJ/kg = 4.2 MJ

    Spread across 24 hours, that’s 49 W of cooling power. There will be a bit more going into the chilled water surrounding the bullets, but most of the energy goes into the water-to-ice phase change.

    Run another way, 5 gallons of water is 42 pounds. The initial cooling slope looks like 2 °C = 3.6 °F in 2 hr, which is 75 BTU/hr = 23 W. However, the water is cooling the laser (which was inert except for one brief cut) as well as the basement, plus (most importantly) there’s a water pump dissipating 20 W submerged in the bucket, so the icemaker is delivering at least 43 W, which is pretty much its rated performance.

    It’s obviously incapable of keeping up with a laser doing full-time production work, but for my simple needs it seems better than dunking ice packs in the bucket.

    More study (and maybe getting an air-cooled water pump) is in order …

    The original data:

    Silonn icemaker - cooling water data
    Silonn icemaker – cooling water data
  • CO₂ Laser Cutter: Improved PIN-10D Photodiode Filter Holder

    CO₂ Laser Cutter: Improved PIN-10D Photodiode Filter Holder

    Anything would be better than just taping some gel filters to the front of the bare photodiode package:

    Laser output - photodiode kludge
    Laser output – photodiode kludge

    Right?

    I heaved the slab of ½ inch black acrylic left over from the Totally Featureless (WWVB) Clock into the laser cutter and, two passes at 90% power later, had a somewhat lumpy 32 mm donut with an 11 mm hole in the middle. Because acrylic is opaque to the IR light from a CO₂ laser (which is why it cuts so well) and black acrylic is opaque to visible light (which is what the photodiode is designed for), this is at least as good as an aluminum housing and much easier to make.

    Chuck the donut into Tiny Lathe and bore out the hole:

    PIN-10D photodiode filter holder - boring ID
    PIN-10D photodiode filter holder – boring ID

    When it’s a snug fit to ½ inch brass tube (about the same size as the photodiode’s active area), flip it around, and bore the other size out to fit the photodiode case.

    Ram the tube in place, grab the large recess, and center the tube:

    PIN-10D photodiode filter holder - centering snout
    PIN-10D photodiode filter holder – centering snout

    That’s the chuck-in-chuck trick I used with the coasters, because the neither of the larger four-jaw chucks close far enough to get their inside jaws inside those little holes.

    [Edit: Got that backwards: I bored the big recess first.]

    Skim most of the OD down, then, because I am a dolt forgot to put a spacer in there, flip it around again, get it running true (the chuck aligns the flat side):

    PIN-10D photodiode filter holder - turning OD
    PIN-10D photodiode filter holder – turning OD

    Then skim the rest of the OD to clean it up.

    Cut some filter gels to fit inside the recess:

    PIN-10D photodiode filter holder - filter disc cutting
    PIN-10D photodiode filter holder – filter disc cutting

    Even though they’re pretty much transparent to thermal IR, a focused IR laser beam cuts them just fine. The little tab at 6 o’clock (remember round clocks with hands?) keeps the cut circle from falling out.

    Drill & tap for an M3 setscrew to hold the photodiode in place:

    PIN-10D photodiode filter holder - parts
    PIN-10D photodiode filter holder – parts

    Put them all together:

    PIN-10D photodiode filter holder - assembled
    PIN-10D photodiode filter holder – assembled

    I must conjure a better mount for the thing, because this is way too precarious:

    PIN-10D photodiode filter holder - test install
    PIN-10D photodiode filter holder – test install

    Early results suggest it works better than the previous hack job, without ambient light sneaking around the edges of the filter pack.

  • CO₂ Laser Cutter: Random Dots On Engravings

    CO₂ Laser Cutter: Random Dots On Engravings

    The LightBurn forums have many despairing posts from folks with CO₂ lasers sprinkling random dots all over their engravings:

    Well, as it turns out, engraving lots of small test patterns on scrap acrylic and peering at the results revealed the same problem:

    Engraving Target - stray laser pulse - sizes
    Engraving Target – stray laser pulse – sizes

    The test patterns were engraved at various power levels, which was the whole point of the exercise: I was looking at the current waveforms, rather than the acrylic. Despite that, the result should be solid blocks with no speckles in between, which is not quite what happened.

    For reference, the test pattern:

    Pulse Timing Pattern - 1 mm blocks
    Pulse Timing Pattern – 1 mm blocks

    An early hint came from a trace captured while looking at an entire scan line across the pattern:

    Tube Current - gray bars - 20pct - RMS pulse - 100 ma-div
    Tube Current – gray bars – 20pct – RMS pulse – 100 ma-div

    See that isolated spike left of center, where the L-ON signal (magenta trace) is high? That shouldn’t be possible.

    Setting the scope to trigger when the L-ON signal is high (= laser power supply disabled) and the tube current is more than a few milliamps (= laser beam active) captures those errant dots.

    Sometimes a spurious pulse happens just after L-ON goes high to disable the HV output:

    Tube Current - 20pct - glitch risng edge 30mA trig - 10 ma-div
    Tube Current – 20pct – glitch risng edge 30mA trig – 10 ma-div

    The X axis stepper DIR signal (yellow trace) shows the laser was scanning right-to-left, so the glitch will be just to the left of the 2 mm block in the pattern. In point of fact, it’s about ¾ of the way down the right-hand column:

    Engraving Target - stray laser pulses
    Engraving Target – stray laser pulses

    A closer look shows a distinct circular pit at the end of the line:

    Engraving Target - stray laser pulse - detail
    Engraving Target – stray laser pulse – detail

    The two left-to-right lines bracketing that line also show how the high-intensity pulses affect the laser beam startup intensity during a scan line.

    Sometimes the glitches happen quite some time after the laser turns off:

    Tube Current - 20pct - glitch 30mA trig - 10 ma-div
    Tube Current – 20pct – glitch 30mA trig – 10 ma-div

    Sometimes they’re in the middle of what should be a blank space:

    Tube Current - 20pct - glitch pulse offscale - 10 ma-div
    Tube Current – 20pct – glitch pulse offscale – 10 ma-div

    The glitches are not always full-scale events. The two nearly invisible pulses just to the right of the block (bottom green trace) make the smaller dots you can see on the targets:

    Tube Current - 20pct - glitch pulses - 10 ma-div
    Tube Current – 20pct – glitch pulses – 10 ma-div

    As far as I can tell, spurious dots happen most often with current levels around 20% PWM, less at 10% PWM, and rarely above 30% PWM. I think it has something to do with the chaotic spikes that the power supply produces at lower currents, instead of the relatively stable outputs for higher currents.

    Although these measurements are for the replacement HV supply I got when the original supply failed, I saw similar chaotic waveforms with a Cloudray HV supply I bought as a backup. Given that other people have reported similar random dots with many other machines & power supplies, I think these scope traces show where the dots come from: all the power supplies behave the same way.

    The only way to reduce the number of speckles is to use higher power, which will require higher scanning speeds to achieve similar results. Unfortunately, higher speeds give the power supply less settling time, so there may be no good answer.

    I haven’t been able to find any “official” schematics for the HV laser power supplies shipped in typical lasers (there are many terminal wiring diagrams), so I have no idea how the L-ON signal controls the output current. Apparently the oscillating chaos inside the power supply occasionally punches through the output switch, which isn’t too surprising given the voltage and power levels in there.

    If nothing else, the acrylic test pieces look pretty on the microscope positioner:

    Edge-lit engraving test target
    Edge-lit engraving test target

    In the usual techie sort of way …

  • CO₂ Laser Tube Current: Light Output

    CO₂ Laser Tube Current: Light Output

    Just to see what the laser tube’s output looks like, I aimed a large photodiode toward the laser tube output:

    Laser output - photodiode kludge
    Laser output – photodiode kludge

    That’s a venerable PIN-10AP photodiode minus its green human-eye filter, with an IR-pass / visible-block set of gel filters taped on the front to knock out everything except IR scattered from the laser’s snout. Nothing sits in the direct beamline.

    The alert reader will kvetch about a CO₂ laser running at 10.6 µm, an order of magnitude off the right end of the photodiode response curve graphs, through stage filter gels not even pretending to have optical specs. Hey, stage light filters are utterly transparent to thermal IR and there’s plenty of invisible light to go around, so maybe this will work.

    The coaxial cable trails off to the scope’s 1 MΩ input, so, although the photodiode does not operate in true zero-bias mode, I can at least look at its photocurrent driving a voltage into the scope input.

    Surprisingly, the lashup kinda-sorta works well enough to show the laser’s light output tracking the tube’s current:

    Tube Current - 90pct - IR diode 50mV-div - tube 20 ma-div
    Tube Current – 90pct – IR diode 50mV-div – tube 20 ma-div

    That’s a manual 20 ms pulse at 90% PWM, with the tube current at 20 mA/div. The oscillations at the start of the current pulse seem to excite the tube enough for the light output to stabilize when the real current comes along. I cannot tell if the exponential tail-off beyond the pulse is due to excited molecules cooling off in the laser tube or the poor photodiode recovering from Too. Much. Light. It. Burns.

    The response is a little shakier at 50% PWM:

    Tube Current - 50pct - IR diode 50mV-div - tube 20 ma-div
    Tube Current – 50pct – IR diode 50mV-div – tube 20 ma-div

    Dropping to 30% PWM requires more time to get up and running:

    Tube Current - 30pct - IR diode 50mV-div - tube 20 ma-div
    Tube Current – 30pct – IR diode 50mV-div – tube 20 ma-div

    And 10% PWM looks downright awful:

    Tube Current - 10pct - IR diode 10mV-div - tube 20 ma-div
    Tube Current – 10pct – IR diode 10mV-div – tube 20 ma-div

    Although the vertical scale for the photodiode trace doesn’t mean much, it’s obvious that the IR output matches the current input, right down to the littlest pulses. Sliding a bit of brass shimstock between the filter gels eliminates nearly all the photodiode output, so it’s not electrical noise. I think the long tail really shows the gases cooling off.

    The alert reader will have noted the wee blip over there on the right, 21 ms after the start of the 20 ms long pulse and 4 ms after all those spikes shut off. Yup, the HV power supply can deliver a stray pulse when it’s not supposed to be enabled. More on that in a while.