The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Category: Home Ec

Things around the home & hearth

  • Bathtub Soap Tray V2

    Bathtub Soap Tray V2

    As expected, the adhesive foam strips I used on the bathtub soap tray didn’t survive continued exposure to hot soapy water, so Version 2 includes hooks securing it to the ceramic soap tray and a few other tweaks:

    Bathtub Soap Tray - V2 - LightBurn layout
    Bathtub Soap Tray – V2 – LightBurn layout

    The view from the top:

    Soap Tray V2 - top
    Soap Tray V2 – top

    The hooks are more visible from the bottom, as is the 10 AWG copper wire preventing the whole affair from rotating around the ceramic handle from the weight of the soap bar:

    Soap Tray V2 - bottom
    Soap Tray V2 – bottom

    Ignore the usual crud you’ll find on your ceramic soap tray, too.

    This time I glued things together with Weld-On IPS #3 acrylic solvent.

    The LightBurn layout as a GitHub Gist:

    Loading
    Sorry, something went wrong. Reload?
    Sorry, we cannot display this file.
    Sorry, this file is invalid so it cannot be displayed.
  • Converted OttLite Rebasing

    Converted OttLite Rebasing

    The OttLite I converted into a NisLite fell over again and, now having a way to make the long-promised base, this happened:

    Converted Ottlite - cardboard base
    Converted Ottlite – cardboard base

    It’s not particularly elegant, what with being cardboard, but it’s a proof of concept that will determine the final size.

    The top layer is a ring around the lamp pedestal for a bit of stabilization protecting the four M3 screws holding the base to the lamp. Those screws sit on a 60 mm square, offset 1 mm to the front of the lamp:

    NisLite Baseplate - LightBurn layout
    NisLite Baseplate – LightBurn layout

    Which explains why I typically make the first few versions of anything out of cardboard.

    For the record, those inserts look like this:

    Converted Ottlite - brass inserts
    Converted Ottlite – brass inserts

    A pair of very flat-head M3 screws hold the front inserts in place through holes match-drilled in the remains of the bosses I’d long ago epoxied in place. I pressed the rear inserts in place by misusing the drill press, as the lamp is much too tall for the heat setter.

    Then comes the iron base weight:

    Converted Ottlite - iron weight
    Converted Ottlite – iron weight

    And then the steel outer plate:

    Converted Ottlite - steel cover plate
    Converted Ottlite – steel cover plate

    The new base plate gets a ring around its perimeter for clearance under the four pan head M3 screws into the inserts.

    If the cardboard base is stable enough, we’ll do an acrylic version in cheerful primary colors.

    The LightBurn layout in SVG format as a GitHub Gist:

    Loading
    Sorry, something went wrong. Reload?
    Sorry, we cannot display this file.
    Sorry, this file is invalid so it cannot be displayed.
  • Ceiling Lamp Nuts

    Ceiling Lamp Nuts

    While cleaning dead bugs out of the ceiling lamps, we discovered the kitchen light was missing one of the three nuts holding its cover in place. While spare nuts might be available, this seemed like a quicker & easier solution:

    Ceiling Lamp Nut - bottom view - solid model
    Ceiling Lamp Nut – bottom view – solid model

    The stepped interior fits a brass insert with 8-32 threads (not metric, to my utter astonishment) rammed in place with a heat-set tool:

    Ceiling Lamp Nut - insert staking
    Ceiling Lamp Nut – insert staking

    Using the nominal diameters seems to work fine, although I’m sure some finesse will be needed with smaller inserts.

    Printed four just to be sure, rammed three inserts, and they’re ready:

    Ceiling Lamp Nuts - as-built
    Ceiling Lamp Nuts – as-built

    The curved cap matches the original nut through the use of the Chord Equation to get the cap radius as a function of its height (sagitta) & base diameter. Admittedly, it looks kinda grotty with only a dozen layers, but it’s the thought that counts.

    The original nuts are heavy knurled steel and the new ones are cheap plastic, but nobody will ever know:

    Ceiling Lamp Nut - installed
    Ceiling Lamp Nut – installed

    Bonus: now I have two spare steel nuts for the next time …

    The OpenSCAD source code:

    // Nuts for LED ceiling light fixture
    // Ed Nisley KE4ZNU
    // 2024-09-27
    
    KnurlLength = 7.4;
    KnurlOD = 9.0;
    
    CapOD = 9.0;
    CapHeight = 2.0;
    CapRadius = (pow(CapHeight,2) + pow(CapOD,2)/4)/(2*CapHeight);
    echo(CapRadius=CapRadius);
    
    NumSides = 1*(2*3*4);
    $fn = NumSides;
    
    Protrusion = 0.1;
    
    difference() {
        union() {
            intersection() {
                translate([0,0,KnurlLength + CapHeight - CapRadius])
                    sphere(r=CapRadius);
                translate([0,0,KnurlLength])
                    cylinder(d=2*KnurlOD,h=KnurlLength);
            }
    
            cylinder(d=KnurlOD,h=KnurlLength);
    
        }
    
    // Ad-hoc 8-32 brass insert sizes
    
        cylinder(d=5.5,h=8.0);
        cylinder(d=5.9,h=5.7);
        cylinder(d=6.2,h=2.2);
        translate([0,0,-Protrusion])
            cylinder(d=6.2,h=2.2);
    
    }
    
  • Subaru Upholstery Peg

    Subaru Upholstery Peg

    One of the flat-topped pegs anchoring the fuzzy black upholstery / carpet to the back of the rear seats went walkabout a while ago, but the situation only became critical after I vacuumed the crud out of the car.

    Living in the future simplifies things:

    Upholstery Peg - solid model
    Upholstery Peg – solid model

    Rather than getting all fancy with barbed ends and suchlike, I just slathered the stem with hot-melt glue, jammed it in place, and waited a few breaths:

    Upholstery peg - installed
    Upholstery peg – installed

    The vivid yellow stuff is seat cushion foam.

    3D printing is wonderful for simple parts like that.

    The OpenSCAD source code is simple enough:

    // Upholstery pin for Subaru back seat
    // Ed Nisley KE4ZNU
    // 2024-09-13
    
    HeadThick = 1.5;
    HeadOD = 25.0;
    
    PegLength = 10.0;
    PegOD = 8.0;
    SlotWidth = 1.5;
    
    rotate_extrude(angle=360,$fn=32)
        polygon(points=[[0,0],[HeadOD/2 - 1,0],[HeadOD/2,HeadThick],[0,HeadThick]]);
    
    difference() {
        rotate(180/8)
            cylinder(d=PegOD,h=10.0,$fn=8);
    
        translate([0,0,HeadThick ])
            cylinder(d=PegOD/2,h=PegLength,$fn=8);
    
        for (a=[0,90])
            rotate(a)
                translate([0,0,PegLength/2 + HeadThick + 1.0])
                    cube([SlotWidth,10.0,PegLength],center=true);
    
    }
    
    
  • Simpleminded Photographic Light Box

    Simpleminded Photographic Light Box

    The general idea of a light box is (wait for it) a uniform background in a box full of bright light:

    Light Box - overview
    Light Box – overview

    Obviously, this is a low-budget light box, but it makes perfect sense if you already have an essentially unlimited supply of moving boxes, 11×17 inch plotter paper, and a couple of photo / video lights lying around.

    A two-layer cardboard ring glued to the top keeps the light from sliding off the box and stiffens the gaping hole letting the light shine through.

    You’d normally use a fabric background to get rid of those ugly gaps around the edges and a larger box would be better, so this is along the lines of a proof-of-concept.

    From the camera’s viewpoint, it looks better than my crusty desktop cutting mat:

    Light Box - gears overview
    Light Box – gears overview

    Those gears would not look out of place in Bowman’s bedroom in 2001: A Space Odyssey.

    In this day and age, you’d normally use a phone camera:

    Light Box - gears overview - DOF
    Light Box – gears overview – DOF

    The lens on my Pixel 6a has a fixed focal length (around 4.4 mm = 27 mm equivalent) and a fixed f/1.8 (-ish) aperture, producing a razor-thin depth of field at the rear of the front gears. Note the fuzzy gears in the background, all of three inches away, and the slightly fuzzy front edge of the front gears. The camera’s digital zoom doesn’t help matters in the least, despite the AI-powered interpolation.

    Keeping things close together helps, although the far end of the wipe towers and the rear of the gears lose detail:

    Light Box - gears stacked
    Light Box – gears stacked

    Looking from above also helps a little, but a top viewing port would reduce the skewed perspective:

    Light Box - gears detail - DOF
    Light Box – gears detail – DOF

    Shallow DOF keeps your attention on the foreground, which is why real photographers use it for portraits:

    Light Box - gears standing - DOF
    Light Box – gears standing – DOF

    The camera, an ancient Sony DSC-H5 with a zoom lens going down to f/8, still does nice work through a 2× macro adapter lens:

    Light Box - gear detail - top light
    Light Box – gear detail – top light

    The DOF is still narrow, but at least the entire front gear is in focus.

    Adding a front light picks out the knurling:

    Light Box - gears detail - front light
    Light Box – gears detail – front light

    The results definitely look better than before, but it’ll take a bit of getting used to traipsing to the Basement Laboratory for every photo …

  • Husky Workbench Caster Feet

    Husky Workbench Caster Feet

    The flat robot vacuum assigned to clean the floors around here would occasionally get stuck under the leg of my Husky workbench-as-desk and fail to complete its mission. Living in the future makes solving that problem a matter of minutes:

    Husky workbench caster feet - installed
    Husky workbench caster feet – installed

    The upper rim captures the locked-in-place wheel in a 35×25 mm recess atop the middle 45×35 mm slab, with a 2.5 mm cork layer on the bottom. Laser-cut, of course, glued with ordinary yellow wood glue, and clamped for about half of a Squidwrench remote meeting.

    Raising the desk by 5.5 mm gives the Flat One juuust enough clearance to scuttle under there:

    Husky workbench caster feet - vacuum clearance
    Husky workbench caster feet – vacuum clearance

    That was easy …

  • Revised Measuring Spoon Drainer

    Revised Measuring Spoon Drainer

    A small tweak to the venerable spoon drainer adds a configurable cutout adapting it to a slightly different dish drainer rack:

    Measuring Spoon Drainer - solid model
    Measuring Spoon Drainer – solid model

    Which lets it snuggle into the corner:

    Measuring spoon drainer - installed
    Measuring spoon drainer – installed

    Both the old and new racks had coated steel loops stuck into rubberoid feet perfectly suited to collect water and eventually rust the loops. Given a new rack, I figured potting the feet in JB PlasticBonder urethane adhesive would help forestall the rust:

    Rubbermaid dish drainer - foot potting
    Rubbermaid dish drainer – foot potting

    I wish it were white, rather than black, but the only other color choice is tan and I can’t wish nearly that hard.

    Along those lines, however, the gray JB Weld epoxy coating on the cheese slicer and the smaller repairs on the big knife are doing fine after years of use. JB Weld is good stuff!