The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Category: Electronics Workbench

Electrical & Electronic gadgets

  • 5 mW Laser Module

    A trio of 5 mW laser modules arrived with a bunch of other surplus gear after an end-of-year sale:

    5 mW Laser Module
    5 mW Laser Module

    It runs on 5 V at 20 mA, determined by the 91 Ω SMD resistor soldered across the terminals at the back of the PCB. That suggests the laser diode itself runs at about 3.2 V: 5 V – 0.020 A * 91 Ω.

    The brass case connects to the red (positive) wire, so you must insulate the laser module from the usual grounded metal chassis.

    Two of the three lasers arrived badly defocused, but a twist of the brass barrel broke the sealing glue and a bit more twiddling found the sweet spot.

    Running one of these from an Arduino would be just like the UV LED: redefine a bit in the shift register bitfield and drive the laser with a MOSFET switch.

    I’d be tempted to bypass the SMD resistor and run it from an LM317-style current regulator hitched directly to the raw battery; I’m pretty sure I have some LM317 regulators in TO-92 packages. The sense resistor would be 62.5 Ω = 1.25 V / 0.02 A, dissipating 25 mW = 1.25 V * 20 mA. From a freshly charged 7.2 V Li-ion battery at 8.5 V, the regulator would dissipate something like 80 mW =(8.5 – 1.25 – 3.2 V) * 20 mA.

    Or just add more series resistance and ignore the brightness variation?

  • Traffic Signals: Green LED Failures

    Traffic Signal - dead green LEDs - 2012
    Traffic Signal – dead green LEDs – 2012

    In our (admittedly limited) travels around New York State during the last half decade or so, I’ve seen many (as in, dozens of) traffic signals with this failure:

    Apparently the topmost LED string burns out first, leaving the other two (?) strings intact. The earliest picture I have dates back to 2008, so this is a problem of long standing that’s probably wiped out any projected maintenance cost reduction for the entire purchase. The most recent failure I spotted, a few weeks after taking this picture, has a flickering upper string that means it’s not long for this world.

    Somewhere up around Albany, I recently saw a green signal with only that string lit up and the other two (?) strings dead, but that’s the sole exception to the pattern.

    Of late, NYS DOT has been installing a different green lamp with the LEDs in each string scattered over the entire surface and no diffuser. That means a failed string, of which I’ve already seen several examples in the area, darkens a few spots without being particularly obvious; a less common failure has a few flickering “pixels” that will eventually go dark. While that’s a net win, I wonder why only green lamps have this problem: we very rarely see red or amber lamps with any failed LEDs.

    One red LED lamp down the road did fail spectacularly: the whole thing flashed, slowly and somewhat irregularly. Not a flicker, but a flash: long off and short on.

    It’s hard to get pictures of failed traffic signals…

    While I suppose I should report them, previous attempts to do so have only led to requests for the ID number of the traffic control box, which generally can’t be seen from the traffic lane. I am not stopping at an intersection, getting out, finding the box (perhaps crossing the intersection to get there), finding the ID number, and taking a picture for later reference; you know what happens to people who take pictures of infrastructure. You’d think the signals could phone home on their own, but they’re likely not connected.

  • Arduino Snippets: LED Stroboscopic Tachometer

    A bit of fiddling with the Arduino PWM hardware can turn a white LED into a stroboscopic tachometer to chop smooth motion into chunks:

    Strobe - Maze 1 - 50 Hz 100 us
    Strobe – Maze 1 – 50 Hz 100 us

    I was moving that pendant by hand and slight speed changes were easily visible:

    Strobe - Maze 2 - 50 Hz 100 us
    Strobe – Maze 2 – 50 Hz 100 us

    IBMers of a certain era may recognize the test object; the rest of you can go there.

    That’s a 10 mm warm-white LED with 5 parallel chips, running at about 100 mA from a 5 V supply, and driven from the same PWM channel and MOSFET that used to drive also drives the red channel of the RGB LED Mood Light:

    White LED Strobe
    White LED Strobe

    The ZVNL110A MOSFET has a 3 Ω drain resistance, which becomes a significant part of the resistance; you’d want a bigger, better, lower resistance MOSFET to wring more light out of the LED. In fact, I ran the LED from 12 V with the same resistor at a few hundred mA.

    The reason you need more light is to make up for the minuscule duty cycle. In order to “stop motion”, you want a very short pulse; I picked a 100 μs pulse. At 50 Hz, that works out to a 0.5% duty cycle: not much light at 100 mA, but OK for a demo.

    You can’t do this with the standard Arduino PWM setup, because it produces a constant frequency (about 488 Hz) and varies the duty cycle; we need a variable frequency with a constant pulse length. Because a stroboscope needs fine-grained control over the frequency, in order to stop the motion of rotating objects, it should run from one of the 16 bit Timer1 PWM outputs, which means either PWM9 or PWM10. Note that simply changing the timer’s clock prescaler as described there won’t suffice, because that gives very coarse control of the PWM frequency.

    It’s probably worth noting that trying to do precise timing purely in software with, say, the millis() and micros() functions, produces terrible results…

    The Arduino timer hardware includes control over both the period and the duration of the output pulses. The Fine Manual describes all the timer configuration registers starting on page 109; see that post for a push-pull PWM driver that formed the basis of this one.

    Fast PWM (Mode 14) has some useful characteristics:

    • Single-slope operation: timer counts only upward
    • Output PWM9 goes high when TCNT1 resets to 0
    • Output PWM9 goes low when TCNT1 = OCR1A
    • TCNT1 resets when TCNT1 = ICR1

    The lowest possible output frequency occurs with ICR1 = 0xffff, so that Timer1 counts from 0x0000 to 0xffff before resetting (which, in that case, is indistinguishable from simply wrapping). The wrap period = ICR1 * tick period and the corresponding frequency = 1 / period.

    The clock prescaler determines the overall range of Timer1 by setting the tick period. The Clock Select bit field can take on 6 useful, albeit widely separated, values (the other two select the external clock pin):

    • 0 – stop timer
    • 1 – prescale 1:1 = 62.5 ns tick → 244 Hz
    • 2 – prescale 1:8 = 500 ns tick → 30 Hz
    • 3 – prescale 1:64 = 4 μs tick → 3.8 Hz
    • 4 – prescale 1:256 = 16 μs tick → 0.95 Hz
    • 5 – prescale 1:1024 = 64 μs tick → 0.24 Hz

    For my purposes, a lower limit around 4 Hz seemed about right. That means CS = 3, the prescaler runs at 1:64, and the timer ticks at 4 μs.

    The frequency upper limit could be just under 1/(pulse width), which would produce a very high duty cycle. I arbitrarily set the limit to 1/(4 × pulse width), for a 25% duty cycle that works out to 1/(4 × 100 μs) = 2.5 kHz = 150 k flash/min. If you’re using very high current drive, then limit the duty cycle to prevent toasting the LED.

    Because a strobe tach needs quick & easy adjustment, the encoder knob tweaks the pulse frequency in 1 Hz steps. Pushing the knob to close the shaft switch (if you have such a knob, of course, otherwise use another button; they all do the same thing here) reduces the step size to 0.01 Hz, which is more useful for fine tuning when you’re close to the goal. A real application requires better control over the numeric values (probably using integer values); I used floating point and simply ignored all the usual roundoff issues:

    Stroboscope Tachometer
    Ed Nisley - KE4ZNU - December 2012
    Frequency: 10.00
    Pulse duration: 100 us
    Frequency: 11.00
    Frequency: 12.00
    Frequency: 13.00
    Frequency: 14.00
    Frequency: 14.01
    Frequency: 14.02
    Frequency: 14.02
    Frequency: 14.02
    Frequency: 14.01
    Frequency: 14.00
    Frequency: 13.98
    Frequency: 13.97
    Frequency: 13.97
    Frequency: 13.96
    Frequency: 13.94
    Frequency: 13.93
    Frequency: 14.93
    Frequency: 15.93
    Frequency: 16.94
    Frequency: 17.94
    

    Updating the counter period requires:

    • Shut off interrupts to prevent interference with the high byte storage register
    • Stop the timer: CS=0
    • Load the new upper limit in ICR1
    • Force TCNT1 to be just below IRC1 to terminate the current pulse
    • Start the timer: CS=3
    • Enable interrupts again

    You’d probably plunk that into a separate function in a real program…

    Printing the frequency becomes a hassle without floating point formatting in printf(). It should appear on the character LED display, too. Optionally / additionally showing the value in rev/min would be very nice.

    You’d want to increment the frequency by some reasonable fraction of the current value, perhaps rounded to 1 / 2 / 5 / 10 percent steps. Larger steps by pushbutton? Truncate the current value to a multiple of the step size?

    You would also want some way to adjust the flash duration, but that’s definitely in the nature of fine tuning.

    As it stands, a 100 μs pulse really does stop motion:

    Fan stopped at 2500 rpm
    Fan stopped at 2500 rpm

    That’s a fan running at about 2500 rpm, with the LED flashing at 41.86 Hz. The camera exposure is 1/2 sec @ f/3.5, handheld, which means the camera integrated about 20 flashes. Ambient light accounts for the background blur: I boosted the grossly underexposed image right out of darkness. The square on the hub is retroreflective tape for a laser tachometer that verified the speed.

    Yes, half a second handheld. The morning tea wears off during the day…

    In round numbers, 41.86 Hz = 23.9 ms / rev. The fan diameter is 86 mm, so the blade tips travel 1.1 mm = (270 mm / 23.9 ms) × 100 μs during each flash. The tips seem slightly blurred when you (well, I) look very closely in real life, but I think this lashup worked pretty well right off the sketchpad.

    The Arduino source code:

    // Stroboscopic Tachometer
    // Ed Nisley - KE4ANU - December 2012
    
    //----------
    // Pin assignments
    
    const byte PIN_KNOB_A = 2;			// knob A switch - must be on ext interrupt 2
    const byte PIN_KNOB_B = 4;			//  .. B switch
    const byte PIN_BUTTONS = A5;		//  .. push-close momentary switches
    
    const byte PIN_STROBE = 9;			// LED drive, must be PWM9 = OCR1A using Timer1
    
    const byte PIN_PWM10 = 10;			// drivers for LED strip, must turn these off...
    const byte PIN_PWM11 = 11;
    
    const byte PIN_SYNC = 13;			// scope sync
    
    //----------
    // Constants
    
    const int UPDATEMS = 10;				// update LEDs only this many ms apart
    
    #define TCCRxB_CS 0x03					// Timer prescaler CS=3 -> 1:64 division
    
    const float TICKPD = 64.0 * 62.5e-9;	// basic Timer1 tick rate: prescaler * clock
    
    enum KNOB_STATES {KNOB_CLICK_0,KNOB_CLICK_1};
    
    // ButtonThreshold must have N_BUTTONS elements, last = 1024
    
    enum BUTTONS {SW_KNOB, B_1, B_2, B_3, B_4, N_BUTTONS};
    const word ButtonThreshold[] = {265/2, (475+265)/2, (658+475)/2, (834+658)/2, (1023+834)/2, 1024};
    
    //----------
    // Globals
    
    float FlashLength = 0.1e-3;						// strobe flash duration in seconds
    word FlashLengthCt = FlashLength / TICKPD;		//  ... in Timer1 ticks
    
    float FlashFreq = 20.0;							// strobe flash frequency in Hz
    float FlashPd = 1.0 / FlashFreq;				//  ... period in sec
    word FlashPdCt = FlashPd / TICKPD;				//  ... period in Timer1 ticks
    
    float FreqIncr = 1.0;							// default frequency increment
    const float FreqMin = 4.0;
    const float FreqMax = 1.0/(4.0*FlashLength);
    
    volatile char KnobCounter = 0;
    volatile char KnobState;
    
    byte Button, PrevButton;
    
    unsigned long MillisNow;
    unsigned long MillisThen;
    
    //-- Helper routine for printf()
    
    int s_putc(char c, FILE *t) {
      Serial.write(c);
    }
    
    //-- Knob interrupt handler
    
    void KnobHandler(void)
    {
    	byte Inputs;
    	Inputs = digitalRead(PIN_KNOB_B) << 1 | digitalRead(PIN_KNOB_A);  // align raw inputs
    //	Inputs ^= 0x02;                             // fix direction
    
    	switch (KnobState << 2 | Inputs) {
    	case 0x00 : 				// 0 00 - glitch
            break;
    	case 0x01 : 				 // 0 01 - UP to 1
            KnobCounter++;
    		KnobState = KNOB_CLICK_1;
    		break;
    	case 0x03 : 				 // 0 11 - DOWN to 1
            KnobCounter--;
    		KnobState = KNOB_CLICK_1;
    		break;
    	case 0x02 : 				 // 0 10 - glitch
            break;
    	case 0x04 : 				 // 1 00 - DOWN to 0
            KnobCounter--;
    		KnobState = KNOB_CLICK_0;
    		break;
    	case 0x05 : 				 // 1 01 - glitch
            break;
    	case 0x07 : 				 // 1 11 - glitch
            break;
    	case 0x06 : 				 // 1 10 - UP to 0
            KnobCounter++;
    		KnobState = KNOB_CLICK_0;
    		break;
    	default :  					// something is broken!
            KnobCounter = 0;
    		KnobState = KNOB_CLICK_0;
    	}
    }
    
    //-- Read and decipher analog switch inputs
    //		returns N_BUTTONS if no buttons pressed
    
    byte ReadButtons(int PinNumber) {
    
    word RawButton;
    byte ButtonNum;
    
    	RawButton = analogRead(PinNumber);
    
    	for (ButtonNum = 0; ButtonNum <= N_BUTTONS; ButtonNum++){
    		if (RawButton < ButtonThreshold[ButtonNum])
    			break;
    	}
    
    	return ButtonNum;
    
    }
    
    //------------------
    // Set things up
    
    void setup() {
    	pinMode(PIN_SYNC,OUTPUT);
    	digitalWrite(PIN_SYNC,LOW);	// show we arrived
    
    	analogWrite(PIN_PWM10,0);			// turn off other PWM outputs
    	analogWrite(PIN_PWM11,0);
    
    	analogWrite(PIN_STROBE,1);			// let Arduino set up default Timer1 PWM
    	TCCR1B = 0;							// turn off Timer1 for strobe setup
    	TCCR1A = 0x82;						// clear OCR1A on match, Fast PWM, lower WGM1x = 14
    	ICR1 = FlashPdCt;
    	OCR1A = FlashLengthCt;
    	TCNT1 = FlashLengthCt - 1;
    	TCCR1B = 0x18 | TCCRxB_CS;			// upper WGM1x = 14, Prescale 1:64, start Timer1
    
    	pinMode(PIN_KNOB_B,INPUT_PULLUP);
    	pinMode(PIN_KNOB_A,INPUT_PULLUP);
    
    	KnobState = digitalRead(PIN_KNOB_A);
    	Button = PrevButton = ReadButtons(PIN_BUTTONS);
    
    	attachInterrupt((PIN_KNOB_A - 2),KnobHandler,CHANGE);
    
    	Serial.begin(9600);
    	fdevopen(&s_putc,0);				// set up serial output for printf()
    
    	printf("Stroboscope Tachometer\r\nEd Nisley - KE4ZNU - December 2012\r\n");
    
    	printf("Frequency: %d.%02d\nPulse duration: %d us\n",
    		   (int)FlashFreq,(int)(100.0 * (FlashFreq - trunc(FlashFreq))),
    		   (int)(1e6 * FlashLength));
    
    	MillisThen = millis();
    
    }
    
    //------------------
    // Run the test loop
    
    void loop() {
    
    	MillisNow = millis();
    
    	if ((MillisNow - MillisThen) > UPDATEMS) {
    
    		digitalWrite(PIN_SYNC,HIGH);
    
    		Button = ReadButtons(PIN_BUTTONS);
    		if (PrevButton != Button) {
    			if (Button == N_BUTTONS) {
    //				printf("Button %d released\n",PrevButton);
    				FreqIncr = 1.0;
    			}
    			else
    //				printf("Button %d pressed\n",Button);
    //				if (Button == SW_KNOB)
    					FreqIncr = 0.01;
    			PrevButton = Button;
    		}
    
    		if (KnobCounter) {
    			FlashFreq += (float)KnobCounter * FreqIncr;
    			KnobCounter = 0;
    
    			FlashFreq = constrain(FlashFreq,FreqMin,FreqMax);
    			FlashFreq = round(100.0 * FlashFreq) / 100.0;
    
    			FlashPd = 1.0 / FlashFreq;
    			FlashPdCt = FlashPd / TICKPD;
    
    			noInterrupts();
    			TCCR1B &= 0xf8;				// stop Timer1
    			ICR1 = FlashPdCt;			// set new period
    			TCNT1 = FlashPdCt - 1;		// force immediate update
    			TCCR1B |= TCCRxB_CS;		// start Timer1
    			interrupts();
    
    			printf("Frequency: %d.%02d\n",
    				   (int)FlashFreq,(int)(100.0 * (FlashFreq - trunc(FlashFreq))));
    		}
    
    		digitalWrite(PIN_SYNC,LOW);
    
    		MillisThen = MillisNow;
    	}
    
    }
    

    That’s a grandiose name for a blinking LED, if I ever saw one…

  • LED Stress Tester: Current

    Maybe Eks has forgotten that he loaned me a Tek AM503 Hall effect current probe, which is exactly the right instrument to measure LED currents without introducing any series resistance. In order from the top, we have the amber, red 4-6, red 1-3, and red 7-9, with a scale of 20 mA/div (scope at 10 mV/div):

    LED Current - Tek Hall probe - Y R2 R1 R3
    LED Current – Tek Hall probe – Y R2 R1 R3

    The currents increase by 10 to 20 mA during the pulse, which suggests that the 25 °C thermal change I estimated based on the forward voltage really happens. The power supply decreases pretty much as a 120 mV step and doesn’t vary all that much during the pulse, so I think the LEDs control the current.

    Here’s the forward voltage drop screenshot again for comparison (without the amber LEDs):

    Red LED - group Vf
    Red LED – group Vf

    Overall, they run close enough to 100 mA for my simple needs…

     

  • LED Stress Tester: First Light!

    Based on that circuit simulation, the LED Stress Tester schematic looks about like you’d expect:

    LED Stress Tester Schematic - updated
    LED Stress Tester Schematic – updated

    [Update: Left out the Schottky diode that makes the 20% duty cycle actually work. Drat & similar remarks.]

    The manual wiring turned into a hairball, but from the top it looks pretty good:

    LED Stress Tester - red and amber LEDs
    LED Stress Tester – red and amber LEDs

    The 20 pin DIP IC sockets provide spare contacts, so that ruining a few by jamming fat LED leads into them won’t be a tragedy. Each LED string uses one of three adjacent contacts, which left room for a fourth string of amber LEDs that are, even to the naked eyeball, nearly indistinguishable from the red LEDs.

    The 555 timer output waveform looks just like the simulation:

    Timer Waveform
    Timer Waveform

    The trimpots sit near the middle of their rotations, which is always comforting. The duty cycle trimpot can’t quite get down to 1 ms, which doesn’t matter right now.

    This scope shot shows the total forward drop across the three LED strings, with V=0 offset way down below the bottom of the display:

    Red LED - group Vf
    Red LED – group Vf

    That voltage includes the IRLZ14 MOSFET drain-source voltage, which amounts to a bit less than the thickness of the fuzz on the traces. In round numbers:

    VDS = 400 mA x 0.100 mΩ = 40 mV

    That’s based on this measurement from the MOSFET tester a while back:

    IRLZ14 detail
    IRLZ14 detail

    You could argue the drain voltage is closer to 60 mV. I’d argue that the overall accuracy of all these measurements leaves a lot to be desired; we’re in the right ballpark no matter what.

    Anyhow.

    From the top, the three traces show LED groups 7-9, 1-3, and 4-6 in exactly the predicted order (1-3: 6.445, 4-6: 6.372, and 7-9:6.469 V), if not with exactly the predicted absolute voltages.

    Part of the reason may be that the current limiting resistors that produced about 100 mA were 5.6 Ω, rather than the predicted 10 Ω, They actually measure about 5.7 Ω and the forward drop (from that scope shot) is around 750 mV, so the current could be up around 130 mA: a bit hot. I want to measure the current more closely before leaping to any conclusions.

    The 1/4 W ballast resistors dissipate 100 mW peak / 20 mW average and each LED dissipates 300 mW peak and 60 mW average.

    The 7.5 V wall wart I planned to use requires a much higher average load for good regulation (it emits 10.5 V for light loads), so this lashup runs from that 2 A bench supply through the other end of the Tek banana cable I hacked apart to make those SMD tweezers. The supply voltage at the coaxial jack drops by about 120 mV during the pulse, but we’re dealing with measurements up from ground.

    I think the exponential curve in that scope shot shows the LED internal temperature rise during the pulse. If you figure -2 mV/°C (based on the ever-reliable and always accurate Wikipedia), then the 150 mV change along the exponential works out to 50 mV per LED and a 25 °C temperature rise. I have no idea whether thermal-cycling the LEDs at 100 Hz will cause early bond wire failure or not, which is why I want to let this run for a month or so.

    I love it when a plan comes together…

  • Amber LEDs: Current vs. Voltage

    While wiring up the LED stress tester, I realized I should abuse a string of amber LEDs along with the three red strings. Herewith, four amber LEDs from the top of their bag, with LED 5 = LED 1 retested:

    Amber LEDs - 100 mA
    Amber LEDs – 100 mA

    Apart from being an outlier, that red trace seems much prettier than the others, doesn’t it?

    The data file:

    # LED Curve Tracer
    # Ed Nisley - KE4ZNU - December 2012
    # VCC at LED: 4872 mV
    # Bandgap reference voltage: 1039 mV
    
    # Insert LED, press button 1 to start...
    # INOM    ILED    VccLED    VD    VLED    VG    VS    VGS    VDS    <--- LED 1
    0    0    4872    3668    1203    0    0    0    3668
    10    10087    4872    2951    1920    2079    105    1973    2845
    20    19716    4872    2898    1973    2257    207    2050    2691
    30    30262    4872    2864    2007    2416    317    2099    2546
    40    39891    4872    2840    2031    2551    418    2132    2421
    50    49520    4872    2821    2050    2686    519    2166    2301
    60    59607    4872    2806    2065    2811    625    2185    2180
    70    69694    4872    2792    2079    2927    731    2195    2060
    80    79782    4872    2777    2094    3061    837    2224    1940
    90    90328    4872    2768    2103    3206    948    2257    1819
    100    99957    4867    2763    2103    3307    1049    2257    1713
    
    # Insert LED, press button 1 to start...
    # INOM    ILED    VccLED    VD    VLED    VG    VS    VGS    VDS    <--- LED 2
    0    0    4872    3991    881    0    0    0    3991
    10    9628    4872    2946    1925    2084    101    1983    2845
    20    20174    4872    2888    1983    2257    211    2046    2676
    30    30262    4872    2850    2022    2416    317    2099    2532
    40    39891    4872    2826    2046    2551    418    2132    2407
    50    49978    4872    2802    2070    2681    524    2156    2277
    60    60066    4872    2782    2089    2811    630    2180    2152
    70    69694    4872    2768    2103    2936    731    2205    2036
    80    79782    4872    2753    2118    3076    837    2238    1916
    90    89869    4872    2744    2127    3177    943    2233    1800
    100    99957    4872    2739    2132    3297    1049    2248    1689
    
    # Insert LED, press button 1 to start...
    # INOM    ILED    VccLED    VD    VLED    VG    VS    VGS    VDS    <--- LED 3
    0    0    4872    3788    1083    0    0    0    3788
    10    9628    4872    2941    1930    2084    101    1983    2840
    20    19716    4872    2888    1983    2262    207    2055    2681
    30    29803    4872    2850    2022    2412    312    2099    2537
    40    39891    4872    2826    2046    2551    418    2132    2407
    50    49978    4872    2806    2065    2681    524    2156    2282
    60    60066    4872    2787    2084    2811    630    2180    2156
    70    70153    4872    2777    2094    2960    736    2224    2041
    80    80240    4872    2768    2103    3061    842    2219    1925
    90    90328    4872    2753    2118    3182    948    2233    1805
    100    99957    4867    2753    2113    3302    1049    2253    1704
    
    # Insert LED, press button 1 to start...
    # INOM    ILED    VccLED    VD    VLED    VG    VS    VGS    VDS    <--- LED 4
    0    0    4872    3899    972    0    0    0    3899
    10    9628    4872    2936    1935    2084    101    1983    2835
    20    19716    4872    2888    1983    2262    207    2055    2681
    30    29803    4872    2854    2017    2412    312    2099    2542
    40    39891    4872    2835    2036    2551    418    2132    2416
    50    49978    4872    2816    2055    2681    524    2156    2291
    60    60066    4872    2797    2075    2816    630    2185    2166
    70    70153    4872    2787    2084    2927    736    2190    2050
    80    80240    4872    2773    2099    3061    842    2219    1930
    90    90328    4867    2768    2099    3196    948    2248    1819
    100    99957    4872    2758    2113    3331    1049    2282    1709
    
    # Insert LED, press button 1 to start...
    # INOM    ILED    VccLED    VD    VLED    VG    VS    VGS    VDS    <--- LED 5
    0    0    4872    3841    1030    0    0    0    3841
    10    10087    4872    2951    1920    2079    105    1973    2845
    20    20174    4872    2907    1964    2257    211    2046    2696
    30    30262    4872    2869    2002    2412    317    2094    2551
    40    39891    4872    2845    2026    2551    418    2132    2426
    50    50437    4872    2826    2046    2686    529    2156    2296
    60    60066    4872    2806    2065    2821    630    2190    2176
    70    69694    4872    2797    2075    2941    731    2209    2065
    80    80240    4872    2782    2089    3076    842    2233    1940
    90    89869    4872    2773    2099    3177    943    2233    1829
    100    99957    4872    2763    2108    3321    1049    2272    1713
    
    # Insert LED, press button 1 to start...
    

    The Bash / Gnuplot routine that produced the graph has a few tweaks:

    #!/bin/sh
    numLEDs=4
    #-- overhead
    export GDFONTPATH="/usr/share/fonts/truetype/"
    base="${1%.*}"
    echo Base name: ${base}
    ofile=${base}.png
    echo Input file: $1
    echo Output file: ${ofile}
    #-- do it
    gnuplot << EOF
    #set term x11
    set term png font "arialbd.ttf" 18 size 950,600
    set output "${ofile}"
    set title "${base}"
    set key noautotitles
    unset mouse
    set bmargin 4
    set grid xtics ytics
    set xlabel "Forward Voltage - V"
    set format x "%6.3f"
    set xrange [1.8:2.2]
    #set xtics 0,5
    set mxtics 2
    #set logscale y
    #set ytics nomirror autofreq
    set ylabel "Current - mA"
    set format y "%4.0f"
    set yrange [0:120]
    set mytics 2
    #set y2label "right side variable"
    #set y2tics nomirror autofreq 2
    #set format y2 "%3.0f"
    #set y2range [0:200]
    #set y2tics 32
    #set rmargin 9
    set datafile separator "\t"
    set label 1 "LED 1 = LED $((numLEDs + 1))" at 2.100,110 right font "arialbd,18"
    set arrow from 2.100,110 to 2.105,103 lt 1 lw 2 lc 0
    plot	\
        "$1" index 0:$((numLEDs - 1)) using (\$5/1000):(\$2/1000):(column(-2)) with linespoints lw 2 lc variable,\
        "$1" index $numLEDs using (\$5/1000):(\$2/1000) with linespoints lw 2 lc 0
    EOF
    
  • Red LEDs: Current vs. Voltage Sorting

    Running ten random red LEDs (taken from the bag of 100 sent halfway around the planet) through the LED Curver Tracer produces this plot:

    Red LEDs - 80 mA
    Red LEDs – 80 mA

    The two gray traces both come from LED 1 to verify that the process produces the same answer for the same LED. It does, pretty much.

    Repeating that with the same LEDs in the same order, but stepping 10 mA up to 100 mA produces a similar plot:

    Red LEDs - 100 mA
    Red LEDs – 100 mA

    The voltage quantization comes from the Arduino’s 5 mV ADC resolution (the readings are averaged, but there’s actually not much noise) and the current quantization comes from the step value in the measurement loop (5 mA in the first plot, 10 mA in the second). Seeing the LEDs line up mostly the same way at 80 mA in both graphs is comforting, as it suggests the measurement results aren’t completely random numbers.

    Apply this bit of Bash-fu to the dataset file:

    seq 1 11 > /tmp/seq.txt ; grep -E "^100" Red\ LEDs\ -\ 100\ mA.csv | cut -f 2,5 | paste /tmp/seq.txt - > "Red LED Vf at 100 mA.csv"
    

    Produces a numbered listing of the LED current (in μA) and voltage (in mV) at a nominal 100 mA for each LED:

    1	100415	2108
    2	100415	2185
    3	99957	2152
    4	100415	2132
    5	99957	2137
    6	99957	2103
    7	99957	2161
    8	99957	2137
    9	100415	2171
    10	100415	2132
    11	100415	2113
    

    Putting three red LEDs in series could produce a total forward drop anywhere between 6.309 V (3*2.103) and 6.555 V (3*2.185), a difference of nigh onto a quarter volt, if you assume this group spans the entire range of voltages and the whole collection has many duplicate values and you’re remarkably unlucky while picking LEDs. For this particular set, however, summing three successive groups of three produces 6.445, 6.372, and 6.469 V, for a spread of just under 100 mV. That suggests it’s probably not worthwhile to select LEDs for forward voltage within each series group of three, although matching parallel LEDs makes a lot of sense. I have no confidence the values will remain stable over power-on hours / thermal cycling / current stress.

    The capacity plot for the Wouxun KG-UV3D lithium battery packs shows that there’s not a lot of capacity left after 7.0 V, so shutting down or scaling back to lower current wouldn’t be a major loss. However, it’s not clear a fixed resistor will do a sufficient job of current limiting with 6.5 V forward voltage across the LED string:

    • At 7.5 V, 100 mA calls for 10 Ω (drop 1 V at 100 mA)
    • At 8.2 V, 10 Ω produces 170 mA (1.7 V across 10 Ω)
    • At 7.0 V, 10 Ω produces 50 mA (0.5 V across 10 Ω)

    Obviously, 170 mA is way too much, even by my lax standards.

    A 100 mV variation in forward voltage between stacks, each with a 10 Ω resistor, translates into about 10 mA difference in current. This may actually call for current sensors and direct current control, although using a sensor per string, seems excessive. Low dropout regulators in current-source mode might suffice, but that still seems messy.

    The test rig will run from a hard 7.5 V supply, which means I can use fixed resistors and be done with it.

    The raw data behind those graphs, with LED 1 and LED 11 being the same LED:

    # LED Curve Tracer
    # Ed Nisley - KE4ZNU - December 2012
    # VCC at LED: 4877 mV
    # Bandgap reference voltage: 1039 mV
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 1
    0	0	4877	3707	1169	0	0	0	3707
    10	10087	4877	2970	1906	2084	105	1978	2864
    20	20174	4872	2907	1964	2262	211	2050	2696
    30	29803	4877	2869	2007	2412	312	2099	2556
    40	39891	4877	2840	2036	2546	418	2127	2421
    50	49978	4872	2821	2050	2681	524	2156	2296
    60	60066	4877	2806	2070	2816	630	2185	2176
    70	69694	4872	2792	2079	2927	731	2195	2060
    80	80240	4877	2777	2099	3071	842	2229	1935
    90	89869	4872	2768	2103	3196	943	2253	1824
    100	100415	4872	2763	2108	3312	1054	2257	1709
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 2
    0	0	4877	3803	1073	0	0	0	3803
    10	9628	4872	2960	1911	2084	101	1983	2859
    20	19716	4877	2898	1978	2257	207	2050	2691
    30	30262	4877	2850	2026	2421	317	2103	2532
    40	39891	4877	2816	2060	2551	418	2132	2397
    50	49978	4872	2787	2084	2686	524	2161	2262
    60	60066	4872	2763	2108	2816	630	2185	2132
    70	69694	4872	2744	2127	2927	731	2195	2012
    80	79782	4872	2729	2142	3052	837	2214	1892
    90	90328	4872	2700	2171	3191	948	2243	1752
    100	100415	4872	2686	2185	3331	1054	2277	1632
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 3
    0	0	4877	3716	1160	0	0	0	3716
    10	10087	4877	2960	1916	2094	105	1988	2854
    20	19716	4877	2893	1983	2257	207	2050	2686
    30	30262	4877	2850	2026	2416	317	2099	2532
    40	39891	4872	2821	2050	2546	418	2127	2402
    50	49520	4872	2797	2075	2681	519	2161	2277
    60	59607	4872	2782	2089	2802	625	2176	2156
    70	70153	4877	2763	2113	2932	736	2195	2026
    80	79782	4872	2749	2123	3076	837	2238	1911
    90	90328	4872	2734	2137	3182	948	2233	1786
    100	99957	4872	2720	2152	3321	1049	2272	1670
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 4
    0	0	4877	3716	1160	0	0	0	3716
    10	10087	4877	2965	1911	2079	105	1973	2859
    20	19716	4872	2903	1969	2253	207	2046	2696
    30	30262	4877	2859	2017	2407	317	2089	2542
    40	39891	4877	2830	2046	2546	418	2127	2412
    50	49520	4877	2806	2070	2686	519	2166	2286
    60	60066	4872	2787	2084	2821	630	2190	2156
    70	69694	4872	2773	2099	2927	731	2195	2041
    80	79782	4872	2763	2108	3052	837	2214	1925
    90	90328	4872	2749	2123	3196	948	2248	1800
    100	100415	4872	2739	2132	3331	1054	2277	1685
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 5
    0	0	4877	3697	1179	0	0	0	3697
    10	10087	4877	2965	1911	2079	105	1973	2859
    20	20174	4877	2898	1978	2257	211	2046	2686
    30	30262	4877	2854	2022	2412	317	2094	2537
    40	39891	4872	2830	2041	2551	418	2132	2412
    50	49520	4872	2802	2070	2681	519	2161	2282
    60	60066	4877	2787	2089	2816	630	2185	2156
    70	70153	4872	2768	2103	2932	736	2195	2031
    80	79782	4872	2758	2113	3071	837	2233	1920
    90	89869	4872	2744	2127	3177	943	2233	1800
    100	99957	4872	2734	2137	3293	1049	2243	1685
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 6
    0	0	4877	3764	1112	0	0	0	3764
    10	9628	4877	2980	1896	2079	101	1978	2879
    20	20174	4877	2922	1954	2262	211	2050	2710
    30	30262	4877	2883	1993	2412	317	2094	2566
    40	39891	4872	2859	2012	2551	418	2132	2440
    50	50437	4872	2835	2036	2686	529	2156	2306
    60	60066	4872	2821	2050	2816	630	2185	2190
    70	69694	4872	2802	2070	2941	731	2209	2070
    80	79782	4872	2787	2084	3081	837	2243	1949
    90	90328	4872	2773	2099	3191	948	2243	1824
    100	99957	4872	2768	2103	3307	1049	2257	1718
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 7
    0	0	4877	3870	1006	0	0	0	3870
    10	10087	4877	2970	1906	2089	105	1983	2864
    20	20174	4877	2907	1969	2262	211	2050	2696
    30	30262	4872	2859	2012	2412	317	2094	2542
    40	39891	4872	2830	2041	2551	418	2132	2412
    50	49978	4872	2802	2070	2686	524	2161	2277
    60	60066	4872	2777	2094	2821	630	2190	2147
    70	69694	4872	2758	2113	2927	731	2195	2026
    80	79782	4872	2744	2127	3052	837	2214	1906
    90	90328	4872	2724	2147	3196	948	2248	1776
    100	99957	4872	2710	2161	3302	1049	2253	1660
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 8
    0	0	4877	3702	1174	0	0	0	3702
    10	10087	4877	2970	1906	2084	105	1978	2864
    20	20174	4872	2903	1969	2262	211	2050	2691
    30	30262	4877	2859	2017	2412	317	2094	2542
    40	39891	4877	2830	2046	2546	418	2127	2412
    50	49978	4872	2806	2065	2676	524	2152	2282
    60	59607	4872	2792	2079	2802	625	2176	2166
    70	70153	4872	2777	2094	2932	736	2195	2041
    80	79782	4872	2763	2108	3076	837	2238	1925
    90	90328	4872	2749	2123	3196	948	2248	1800
    100	99957	4872	2734	2137	3302	1049	2253	1685
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 9
    0	0	4872	3721	1150	0	0	0	3721
    10	9628	4877	2975	1901	2084	101	1983	2874
    20	19716	4877	2898	1978	2257	207	2050	2691
    30	30262	4877	2854	2022	2407	317	2089	2537
    40	39891	4877	2821	2055	2546	418	2127	2402
    50	49978	4872	2787	2084	2686	524	2161	2262
    60	60066	4872	2763	2108	2821	630	2190	2132
    70	69694	4872	2744	2127	2927	731	2195	2012
    80	79782	4872	2724	2147	3052	837	2214	1887
    90	90328	4872	2705	2166	3196	948	2248	1757
    100	100415	4872	2700	2171	3297	1054	2243	1646
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 10
    0	0	4872	3702	1169	0	0	0	3702
    10	9628	4872	2980	1892	2070	101	1969	2879
    20	20174	4872	2912	1959	2253	211	2041	2700
    30	30262	4872	2874	1997	2412	317	2094	2556
    40	39891	4877	2840	2036	2546	418	2127	2421
    50	50437	4877	2821	2055	2691	529	2161	2291
    60	60066	4877	2802	2075	2816	630	2185	2171
    70	69694	4872	2782	2089	2927	731	2195	2050
    80	79782	4872	2773	2099	3052	837	2214	1935
    90	90328	4872	2753	2118	3182	948	2233	1805
    100	100415	4872	2739	2132	3331	1054	2277	1685
    
    # Insert LED, press button 1 to start...
    # INOM	ILED	VccLED	VD	VLED	VG	VS	VGS	VDS	<--- LED 11
    0	0	4877	3707	1169	0	0	0	3707
    10	10087	4877	2970	1906	2084	105	1978	2864
    20	20174	4877	2907	1969	2257	211	2046	2696
    30	30262	4872	2869	2002	2412	317	2094	2551
    40	39891	4872	2845	2026	2546	418	2127	2426
    50	50437	4872	2821	2050	2686	529	2156	2291
    60	60066	4872	2806	2065	2821	630	2190	2176
    70	70153	4872	2792	2079	2941	736	2205	2055
    80	80240	4872	2777	2094	3061	842	2219	1935
    90	90328	4872	2773	2099	3187	948	2238	1824
    100	100415	4872	2758	2113	3317	1054	2262	1704
    
    # Insert LED, press button 1 to start...
    

    The Bash / Gnuplot script that produces them:

    #!/bin/sh
    #-- overhead
    export GDFONTPATH="/usr/share/fonts/truetype/"
    base="${1%.*}"
    echo Base name: ${base}
    ofile=${base}.png
    echo Input file: $1
    echo Output file: ${ofile}
    #-- do it
    gnuplot << EOF
    #set term x11
    set term png font "arialbd.ttf" 18 size 950,600
    set output "${ofile}"
    set title "${base}"
    set key noautotitles
    unset mouse
    set bmargin 4
    set grid xtics ytics
    set xlabel "Forward Voltage - V"
    set format x "%6.3f"
    set xrange [1.8:2.2]
    #set xtics 0,5
    set mxtics 2
    #set logscale y
    #set ytics nomirror autofreq
    set ylabel "Current - mA"
    set format y "%4.0f"
    set yrange [0:120]
    set mytics 2
    #set y2label "right side variable"
    #set y2tics nomirror autofreq 2
    #set format y2 "%3.0f"
    #set y2range [0:200]
    #set y2tics 32
    #set rmargin 9
    set datafile separator "\t"
    set label 1 "LED 1 = LED 11" at 2.100,110 right font "arialbd,18"
    set arrow from 2.100,110 to 2.110,103 lt 1 lw 2 lc 0
    plot    \
    "$1" index 0:9 using (\$5/1000):(\$2/1000):(column(-2)) with linespoints lw 2 lc variable,\
    "$1" index 10 using (\$5/1000):(\$2/1000) with linespoints lw 2 lc 0
    EOF

    And the Arduino source code, which bears a remarkable resemblance to the original firmware:

    // LED Curve Tracer
    // Ed Nisley - KE4ANU - December 2012
    
    #include <stdio.h>
    
    //----------
    // Pin assignments
    
    const byte PIN_READ_LEDSUPPLY = 0;    // AI - LED supply voltage        blue
    const byte PIN_READ_VDRAIN = 1;        // AI - drain voltage            red
    const byte PIN_READ_VSOURCE = 2;    // AI - source voltage            orange
    const byte PIN_READ_VGATE = 3;        // AI - VGS after filtering        violet
    
    const byte PIN_SET_VGATE = 11;        // PWM - gate voltage            brown
    
    const byte PIN_BUTTON1 = 8;            // DI - button to start tests    green
    const byte PIN_BUTTON2 = 7;            // DI - button for options        yellow
    
    const byte PIN_HEARTBEAT = 13;        // DO - Arduino LED
    const byte PIN_SYNC = 2;            // DO - scope sync output
    
    //----------
    // Constants
    
    const int MaxCurrent = 100;                // maximum LED current - mA
    const int ISTEP = 10;                    // LED current increment
    
    const float Vcc = 4.930;                // Arduino supply -- must be measured!
    
    const float RSense = 10.500;            // current sense resistor
    
    const float ITolerance = 0.0005;        // current setpoint tolerance
    
    const float VGStep = 0.019;                // increment/decrement VGate = 5 V / 256
    
    const byte PWM_Settle = 5;                // PWM settling time ms
    
    #define TCCRxB 0x01                        // Timer prescaler = 1:1 for 32 kHz PWM
    
    #define MK_UL(fl,sc) ((unsigned long)((fl)*(sc)))
    #define MK_U(fl,sc) ((unsigned int)((fl)*(sc)))
    
    //----------
    // Globals
    
    float AVRef1V1;                    // 1.1 V bandgap reference - calculated from Vcc
    
    float VccLED;                    // LED high-side supply
    
    float VDrain;                    // MOSFET terminal voltages
    float VSource;
    float VGate;
    
    unsigned int TestNum = 1;
    
    long unsigned long MillisNow;
    
    //-- Read AI channel
    //      averages several readings to improve noise performance
    //        returns value in mV assuming VCC ref voltage
    
    #define NUM_T_SAMPLES    10
    
    float ReadAI(byte PinNum) {
    
    word RawAverage;
    
    digitalWrite(PIN_SYNC,HIGH);                // scope sync
    
    RawAverage = analogRead(PinNum);            // prime the averaging pump
    
    for (int i=2; i <= NUM_T_SAMPLES; i++) {
    RawAverage += (word)analogRead(PinNum);
    }
    
    digitalWrite(PIN_SYNC,LOW);
    
    RawAverage /= NUM_T_SAMPLES;
    
    return Vcc * (float)RawAverage / 1024.0;
    
    }
    
    //-- Set PWM output
    
    void SetPWMVoltage(byte PinNum,float PWMVolt) {
    
    byte PWM;
    
    PWM = (byte)(PWMVolt / Vcc * 255.0);
    
    analogWrite(PinNum,PWM);
    delay(PWM_Settle);
    
    }
    
    //-- Set VGS to produce desired LED current
    //        bails out if VDS drops below a sensible value
    
    void SetLEDCurrent(float ITarget) {
    
    float ISense;                // measured current
    float VGateSet;            // output voltage setpoint
    float IError;                // (actual - desired) current
    
    VGate = ReadAI(PIN_READ_VGATE);                    // get gate voltage
    VGateSet = VGate;                                    //  because input may not match output
    
    do {
    
    VSource = ReadAI(PIN_READ_VSOURCE);
    ISense = VSource / RSense;                        // get LED current
    
    //    printf("\r\nITarget: %lu mA",MK_UL(ITarget,1000.0));
    IError = ISense - ITarget;
    
    //    printf("\r\nISense: %d mA VGateSet: %d mV VGate %d IError %d mA",
    //           MK_U(ISense,1000.0),
    //           MK_U(VGateSet,1000.0),
    //           MK_U(VGate,1000.0),
    //           MK_U(IError,1000.0));
    
    if (IError < -ITolerance) {
    VGateSet += VGStep;
    //      Serial.print('+');
    }
    else if (IError > ITolerance) {
    VGateSet -= VGStep;
    //      Serial.print('-');
    }
    
    VGateSet = constrain(VGateSet,0.0,Vcc);
    SetPWMVoltage(PIN_SET_VGATE,VGateSet);
    
    VDrain = ReadAI(PIN_READ_VDRAIN);        // sample these for the main loop
    VGate = ReadAI(PIN_READ_VGATE);
    VccLED = ReadAI(PIN_READ_LEDSUPPLY);
    
    if ((VDrain - VSource) < 0.020) {            // bail if VDS gets too low
    printf("# VDS=%d too low, bailing\r\n",MK_U(VDrain - VSource,1000.0));
    break;
    }
    
    } while (abs(IError) > ITolerance);
    
    //    Serial.println(" Done");
    }
    
    //-- compute actual 1.1 V bandgap reference based on known VCC = AVcc (more or less)
    //        adapted from http://code.google.com/p/tinkerit/wiki/SecretVoltmeter
    
    float ReadBandGap(void) {
    
    word ADCBits;
    float VBandGap;
    
    ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);    // select 1.1 V input
    delay(2); // Wait for Vref to settle
    
    ADCSRA |= _BV(ADSC);                                        // Convert
    while (bit_is_set(ADCSRA,ADSC));
    
    ADCBits = ADCL;
    ADCBits |= ADCH<<8;
    
    VBandGap = Vcc * (float)ADCBits / 1024.0;
    return VBandGap;
    }
    
    //-- Print message, wait for a given button press
    
    void WaitButton(int Button,char *pMsg) {
    printf("# %s",pMsg);
    while(HIGH == digitalRead(Button)) {
    delay(100);
    digitalWrite(PIN_HEARTBEAT,!digitalRead(PIN_HEARTBEAT));
    }
    
    delay(50);                // wait for bounce to settle
    digitalWrite(PIN_HEARTBEAT,LOW);
    }
    
    //-- Helper routine for printf()
    
    int s_putc(char c, FILE *t) {
    Serial.write(c);
    }
    
    //------------------
    // Set things up
    
    void setup() {
    pinMode(PIN_HEARTBEAT,OUTPUT);
    digitalWrite(PIN_HEARTBEAT,LOW);    // show we arrived
    
    pinMode(PIN_SYNC,OUTPUT);
    digitalWrite(PIN_SYNC,LOW);        // show we arrived
    
    TCCR1B = TCCRxB;                    // set frequency for PWM 9 & 10
    TCCR2B = TCCRxB;                    // set frequency for PWM 3 & 11
    
    pinMode(PIN_SET_VGATE,OUTPUT);
    analogWrite(PIN_SET_VGATE,0);        // force gate voltage = 0
    
    pinMode(PIN_BUTTON1,INPUT_PULLUP);    // use internal pullup for buttons
    pinMode(PIN_BUTTON2,INPUT_PULLUP);
    
    Serial.begin(9600);
    fdevopen(&s_putc,0);                // set up serial output for printf()
    
    printf("# LED Curve Tracer\r\n# Ed Nisley - KE4ZNU - December 2012\r\n");
    
    VccLED = ReadAI(PIN_READ_LEDSUPPLY);
    printf("# VCC at LED: %d mV\r\n",MK_U(VccLED,1000.0));
    
    AVRef1V1 = ReadBandGap();            // compute actual bandgap reference voltage
    printf("# Bandgap reference voltage: %lu mV\r\n",MK_UL(AVRef1V1,1000.0));
    
    }
    
    //------------------
    // Run the test loop
    
    void loop() {
    
    Serial.println('\n');                        // blank line for Gnuplot indexing
    
    WaitButton(PIN_BUTTON1,"Insert LED, press button 1 to start...\r\n");
    printf("# INOM\tILED\tVccLED\tVD\tVLED\tVG\tVS\tVGS\tVDS\t<--- LED %d\r\n",TestNum++);
    digitalWrite(PIN_HEARTBEAT,LOW);
    
    for (int ILED=0; ILED <= MaxCurrent; ILED+=ISTEP) {
    SetLEDCurrent(((float)ILED)/1000.0);
    printf("%d\t%lu\t%d\t%d\t%d\t%d\t%d\t%d\t%d\r\n",
    ILED,
    MK_UL(VSource / RSense,1.0e6),
    MK_U(VccLED,1000.0),
    MK_U(VDrain,1000.0),
    MK_U(VccLED - VDrain,1000.0),
    MK_U(VGate,1000.0),
    MK_U(VSource,1000.0),
    MK_U(VGate - VSource,1000),
    MK_U(VDrain - VSource,1000.0)
    );
    }
    
    SetPWMVoltage(PIN_SET_VGATE,0.0);
    
    }