Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.
Try as I might, I cannot uncover a definitive answer to this simple question: What’s the center-to-center spacing of the mic and earphone jacks on the side of Kenwood and Wouxun HTs?
The usual searches produce answers like 11 and 12 mm, both of which are obviously wrong, as can be determined eyeballometrically just by holding a scale against the plugs.
Based on measurements I made on a Wouxun headset, the yellow plug mounting plate put the plugs on 11.2 mm centers and they fit into the KG-UV3D radio; it’s been working fine ever since.
However, having just measured a speaker/mic and a headset, both from Kenwood, I come up with 11.5 mm. Frankly, I trust the Kenwood hardware a bit more: the plugs seem more rugged and the overall production values are higher.
The calculation is simple: measure the pin diameters, then subtract half their sum from the outside distance across the pins. Cross-check by adding half the sum to the inside distance between the pins, which should give the same answer. It helps if the pins are actually round.
The jacks in the Kenwood and Wouxun radios have enough compliance to accept either a Wouxun or a Kenwood headset plug without complaint. Maybe it doesn’t matter?
Despite that, I made another gluing fixture with 11.5 mm spacing:
Plug alignment plate – 11.5 mm spacing
Those are 0.1 inch grids; it’s a little bitty block of smoke-gray polycarbonate from the scrap heap. The plugs are nominally 3.5 mm (which is not 1/8 inch in this universe) and 2.5 mm, with clearance drills #28 and #39.
Then I tried poking those 11.2 mm spaced plugs, now firmly epoxied in place in the yellow plate, and guess what: they don’t fit, no how no way. That’s not surprising, because there’s no compliance on either side of the joint and the plugs aren’t on the right centers for the fixture. Makes for a good No-Go gauge, I suppose.
However, I think I’ll tweak the solid model spacing to 11.5 mm and run off another plug mounting plate for the next radio.
FWIW, our ICOM IC-Z1A HTs use a sensible 10.0 mm spacing and that old fixture worked fine.
For this version of the contacts (the old version is there) that make the GPS interface look like a standard Wouxun lithium battery, I left a bit more of the slot on the brass screw heads and increased the recess depth to compensate:
HT-GPS Case – Battery contacts
The nuts all have fancy nickel plating, with washers & ring lugs silver-soldered in place:
HT-GPS PCB – battery contact parts
The trial fit looks OK:
HT-GPS Case – PCB and battery contacts – end view
I even found the cutest little flat 1/4 inch wrench that fits 4-40 nuts, so I can do a better job of crunching the PCB between the nuts. That excess screw length has got to go, too…
Drilling the PCB went fine, as did the etching & silver plating:
PCB with edge wrap – front
The rear side has a fine ground plane:
PCB with edge wrap – rear
The small spots scattered over the rear mark vias that stitch the front and back planes together; lacking plated-through holes, I solder nippets of 24 AWG wires to both sides. The wrinkly edge comes from solder on the copper foil binding the entire perimeter.
While I have no hard evidence that all of the fuss & bother matters, the most recent version of this circuit is the quietest yet: the machine noise from the TinyTrak3+ that plagued the first iteration has pretty much vanished.
I’ll grant you that the silver plating doesn’t look very silvery in these pix, but it’s quite different from the bare copper in person. Here’s the front just after rubbing it in with a vigorous circular motion:
This iteration of the case latch has slightly larger brass tubing on the ends, hand filed to match the case angle:
Shaping case latch bar
It’s pretty much the same process described there and is why I set up that slitting saw arbor for the next time.
The final result looks pretty good:
HT-GPS Case – Latch plate detail
Those tubing snippets really must be two different lengths: the bar slides to the right (in that picture) to release the case, so:
The short tube and the notch must fit into the space between the edge of the case and the release slot.
The long tube slides outward, with a mark to indicate when the notches align with the release slots.
In principle, you could slide the bar until the shorter tube jams against the latch ramp on the radio, but this case (plus the end caps) turned out to be exactly as long as the distance available and is a rather snug press fit. The next version will be 0.75 mm shorter and should fit better, although snug is good in this situation.
After I get the next GPS+voice interface running on the (yet-to-be-bought) Wouxun KG-UV3D radio, a pair of reasonably new 1A17KG-3 7.4 V 1.7 A·h lithium battery packs will be floating around with nothing to do; the GPS interface connects an external battery to the radio, so there’s no need for the OEM battery.
Before doing anything else, it’d be useful to know the actual capacity. The pack has flush terminals, so I snipped off two lengths of shield braid, jammed a wire into each one, and taped them in place:
Battery pack – braid contacts
That obviously wasn’t going to last, so I added some closed-cell foam:
Battery pack – foam compression
And then, ever so gently, crunched a clamp around the whole mess:
Battery Pack – clamped contacts
Crude, but workable, although the ragged start to the test showed I was too gentle. Another click of the clamp and everything settled down just fine:
Wouxun Pack
In round numbers, the pack delivers 1.6 A·h down to 7.0 V and then falls off very rapidly to the 6.0 V that ended the test.
A string of three red / amber LEDs adds up to 3×1.9 = 5.7 V. A dumb DC blinky light running from 7.4 V has 77% efficiency, which isn’t all that bad, and 70% at the start. A current-regulating switcher might give 85% to 90% at the cost of considerable circuit complexity and wouldn’t be feasible for four independent blinky channels.
The starting voltage, fresh from the charger, is just shy of 8.5 V, which is why I figured I could get away with 9 V from the external pack through the GPS interface. So far, so good.
Obviously, if those packs are to be useful, I must conjure up a better battery holder. Having already designed a battery-shaped case for the GPS interface, it should be easy enough to build a radio-shaped mount for the pack.
This case has a few refinements beyond that one, but it’s recognizably a descendant. The main changes:
The HT cable port on the side has a nice polygonal roof to reduce overhang
The serial connector sits in a recess to allow a thicker top plate
Smaller opening for the LEDs; I’ll get a window in this one, fer shure, yeah
4-40 screws hold the base plate on; setscrews may work and look better
Looks like I’ll be using blue filament for this version, having just discovered the last of the weird colors in the bottom of the 5 gallon bucket serving as a storage bin.
A view from the top:
Solid Model – Oblique Exploded Top
And from the base:
Solid Model – Oblique Exploded Base
The OpenSCAD source code:
// Wouxun KB-UV3D Battery Pack Case
// Ed Nisley KE4ZNU July 2012
include </home/ed/Thing-O-Matic/lib/MCAD/units.scad>
include </home/ed/Thing-O-Matic/Useful Sizes.scad>
// Layout options
Layout = "Show";
// Overall layout: Fit Show
// Printing plates: Build1 .. Buildn (see bottom!)
// Parts: TT3 Audio DSub Shell Base Top
// Shapes: RadioBase Contact
// Speaker-mic mount: PlugPlate
ShowGap = 10; // spacing between parts in Show layout
//- Extrusion parameters must match reality!
// Print with +1 shells and 3 solid layers
ThreadThick = 0.25;
ThreadWidth = 2.0 * ThreadThick;
HoleWindage = 0.2;
function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
Protrusion = 0.1; // make holes end cleanly
//----------------------
// Dimensions
CaseOverallHeight = 31.5; // from battery surface, must clear PCBs!
CaseOverallWidth = 56;
CaseOverallLength = 80.25; // inside of base to end of compartment
BatteryClearance = 1.5; // contact seal height = air gap to compartment
// Interface to radio battery contacts
// Length = shell length
// calculated after everything else, so as to fill the compartment
ContactDia = 6.0; // use rounded contact for simplicity
ContactRecess = IntegerMultiple(0.75,ThreadThick); // recess for contact plate
ContactGapX = 10.5; // X space between contacts
Contact1Y = 52.5; // offset from base to edge of contact
Contact2Y = 56.5;
ContactStudDia = Clear4_40;
ContactStudHead = IntegerMultiple(Head4_40,ThreadWidth);
ContactStudHeadThick = Head4_40Thick;
PlateWidthMin = 53.0;
PlateWidthMax = 54.5;
PlateThick = IntegerMultiple(ContactRecess + ContactStudHeadThick,ThreadThick);
PlateAngle = atan(PlateThick/(PlateWidthMax/2 - PlateWidthMin/2));
echo("Battery plate thick: ",PlateThick);
// Offsets from battery surface to PCB centerlines
// TT3 must be above HT back shell for DB9 clearance
// These must cooperate with the numbers in the case shell module
TT3Offset = 17.5 + PlateThick;
AudioOffset = 4.0 + PlateThick;
// Plate interface to base alignment holes and notches
BaseWidthInner = PlateWidthMin;
BaseWidthOuter = CaseOverallWidth;
BaseLength = CaseOverallHeight; // perpendicular to battery surface
BaseThick = IntegerMultiple(1.0,ThreadThick); // minimum sheet thickness below teeth
BaseWidthTaper = 5.0; // ramp across entire width
BaseOpeningMax = 43.0;
BaseOpeningMin = 33.0;
BaseOpeningY = 5.3;
BaseOpeningDepth = IntegerMultiple(2.25,ThreadThick);
BaseTotalThick = BaseThick + BaseOpeningDepth;
echo("Base min thick: ",BaseThick," total: " ,BaseTotalThick);
BaseTabWidth = 6.0;
BaseTabThick = 2.0;
BaseTabGap = 7.0;
BaseTabOC = BaseTabWidth + BaseTabGap;
BaseToothSection = 3*BaseTabWidth + 2*BaseTabGap;
BaseToothBase = 5.8;
BaseToothTip = 2.8;
BaseToothThick = 2.0;
BaseToothAngle = atan(BaseOpeningDepth/0.6);
BaseToothOC = BaseTabOC;
WedgeAngle = atan(BaseWidthTaper/((BaseWidthOuter - BaseWidthInner)/2));
BaseEndLip = ThreadThick; // should be 0.25 mm or so
BaseEndWidth = (PlateWidthMin - 3*BaseToothBase - 2*BaseToothTip)/2;
BaseEndAngle = atan((BaseOpeningDepth - BaseEndLip)/BaseOpeningY);
SwitchBody = [8.6,3.7,3.3]; // mode switch
// Plate interface to HT battery latch, cables, and connectors
TopThick = IntegerMultiple(5.5,ThreadThick); // plate thickness for stiffness behind latch bar
echo("Top plate thick: ",TopThick);
DB9Recess = TopThick - 4.0; // recess to max TT3 PCB clearance behind DB9 plate
TabEngageLength = 1.6; // tab engaging surface length
TabWidth = 3.0; // ... width
TabEngageHeight = 4.5; // ... above battery compartment floor
TabHeight = 7.5; // tab ramp top above battery compartment floor
TabOC = 40.0;
LatchBarWidth = 3.4; // sliding latch mechanism (brass L stock)
LatchBarDepth = 3.4;
LatchBarThick = 0.35;
echo(" ... minimum: ",TopThick - LatchBarDepth);
SplitOffset = TT3Offset - 3.5;
TopBevel = 1.0; // bevel at top of battery compartment
TopBevelAngle = 45;
PinOffsetWidth = 2.5; // choose to center in sides of case shell
PinOffsetHeight = 13.5; // above baseplate bottom
PinDepth = 7.0; // into case shell
PinDia = 1.2;
ShellLength = CaseOverallLength - BaseThick - TopThick;
echo("Shell length: ",ShellLength);
// Speaker-mic plug plate
PlugBaseThick = 2.5; // recess depth
PlugFillThick = 3.0; // outer plate thickness
//----------------------
// Useful routines
module PolyCyl(Dia,Height,ForceSides=0) { // based on nophead's polyholes
Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
FixDia = Dia / cos(180/Sides);
cylinder(r=(FixDia + HoleWindage)/2,
h=Height,
$fn=Sides);
}
module ShowPegGrid(Space = 10.0,Size = 1.0) {
Range = floor(50 / Space);
for (x=[-Range:Range])
for (y=[-Range:Range])
translate([x*Space,y*Space,Size/2])
%cube(Size,center=true);
}
//-------------------
// Component parts
//-----
// TinyTrak3+ PCB and component envelope
// Some dimensions should feed into the case shell, but don't
module TinyTrak3(Length = 1.0) {
PCBThick = 1.6;
PCBWide = 36.5;
TopHigh = 9.5;
TopWide = PCBWide - 1.5;
BotHigh = 2.5;
BotWide = 35.0;
PCBx = PCBWide/2;
PCBy = (PCBThick + HoleWindage)/2;
URx = TopWide/2;
URy = PCBy + TopHigh;
LRx = BotWide/2;
LRy = PCBy + BotHigh;
linear_extrude(height=Length,center=false,convexity=2) {
polygon(points=[[URx,URy],[URx,PCBy],[PCBx,PCBy],[PCBx,-PCBy],[LRx,-PCBy],[LRx,-LRy],
[-LRx,-LRy],[-LRx,-PCBy],[-PCBx,-PCBy],[-PCBx,PCBy],[-URx,PCBy],[-URx,URy]
]);
}
}
//-----
// Interface PCB and component envelope
// Some dimensions should feed into the case shell, but don't
module AudioInterface(Length = 1.0) {
PCBThick = 2.0;
PCBWide = 49.5;
TopHigh = 9.0 + Protrusion;
TopWide = 46.0;
BotHigh = 3.0;
BotWide = 44.0;
PCBx = PCBWide/2;
PCBy = (PCBThick + HoleWindage)/2;
URx = TopWide/2;
URy = PCBy + TopHigh;
LRx = BotWide/2;
LRy = PCBy + BotHigh;
linear_extrude(height=Length,center=false,convexity=2) {
polygon(points=[[URx,URy],[URx,PCBy],[PCBx,PCBy],[PCBx,-PCBy],[LRx,-PCBy],[LRx,-LRy],
[-LRx,-LRy],[-LRx,-PCBy],[-PCBx,-PCBy],[-PCBx,PCBy],[-URx,PCBy],[-URx,URy]
]);
}
}
//-----
// DB-9 (DE-9) panel opening
// http://www.interfacebus.com/Connector_D-Sub_Mechanical_Dimensions.html
// DB-9 shell mounts on outside surface of case
// This is for the solder terminal side
module DSubMin9(Length = 1.0) {
Holex = 0.984/2 * inch;
HoleDia = Tap4_40;
URx = 0.769/2 * inch;
URy = 0.432/2 * inch;
linear_extrude(height=Length,center=false,convexity=3) {
polygon(points=[[URx,URy],[URx,-URy],[-URx,-URy],[-URx,URy]]);
for (x = [-1,1]) {
translate([x*Holex,0,0])
rotate(45) circle(r=(HoleDia + HoleWindage)/2,$fn=4);
}
}
}
//-----
// Central case shape
// This *should* depend directly on the circuit board sizes, but doesn't
// The "Offset" parameters attempt to bottle up all the board sizes
// Support in LED window must be hand-fit to work correctly... and isn't needed!
module CaseShell(Length=(ShellLength),Holes="true") {
// Polygon coordinates are in XY plane
URx = 40.0/2;
URy = CaseOverallHeight;
MRx = CaseOverallWidth/2;
MRy = 15.0;
LRx = CaseOverallWidth/2;
LRy = (LRx - PlateWidthMin/2)*tan(PlateAngle);
BRx = PlateWidthMax/2;
BRy = PlateThick - 0*Protrusion;
PRx = PlateWidthMin/2; // combined battery plate
PRy = 0;
ScrewOffset = 20.0; // from top end of case
LEDWindow = [26.0,5.0,6]; // with case aligned vertically
LEDOffset = [15,URy,(Length + TopThick - 25.0)];
TrimPot1 = [-14,TT3Offset,(Length + TopThick - 30)];
TrimPot2 = [-14,TT3Offset,(Length + TopThick - 37.5)];
HTCableDia = 3.5;
HTCableOffset = AudioOffset + HTCableDia/2 + 1.0;
rotate([90,0,180])
union() {
difference() {
linear_extrude(height=Length,center=false,convexity=5)
polygon(points=[[URx,URy],[MRx,MRy],[LRx,LRy],[BRx,BRy],[PRx,PRy],
[-PRx,PRy],[-BRx,BRy],[-LRx,LRy],[-MRx,MRy],[-URx,URy]]);
if (Holes) {
translate([0,AudioOffset,-Protrusion])
AudioInterface(Length + 2*Protrusion);
translate([0,TT3Offset,-Protrusion])
TinyTrak3(Length + 2*Protrusion);
for (y = [TT3Offset,AudioOffset])
translate([-CaseOverallWidth,y,(Length - ScrewOffset)])
rotate([0,90,0])
rotate(0) // Z rotation puts point upward for printing
PolyCyl(Tap4_40,CaseOverallWidth);
translate(LEDOffset)
rotate([90,90,0])
translate([-LEDWindow[0]/2,-LEDWindow[1]/2,-Protrusion])
cube(LEDWindow,center=false);
for (p = [TrimPot1,TrimPot2])
translate(p)
rotate([-90,90,0]) // Y rotation puts point upward for printing
PolyCyl(3.0,URy);
for (x=[-1,1]) {
translate([x*(CaseOverallWidth/2 - PinOffsetWidth),
PinOffsetHeight,
(Length - PinDepth)])
rotate(45) // align hole sides with case sides
PolyCyl(PinDia,2*TopThick);
translate([x*(CaseOverallWidth/2 - PinOffsetWidth),
PinOffsetHeight,
-PlateThick])
rotate(45) // align hole sides with case sides
PolyCyl(PinDia,(PlateThick + PinDepth));
}
for (x=[-1,1]) // setscrews to secure base plate
translate([x*(CaseOverallWidth/2 - 3*Tap4_40),
TT3Offset,-Protrusion])
rotate(360/(5*4))
PolyCyl(Tap4_40,2*TopThick);
translate([-(ContactGapX/2 + ContactDia/2),0,(Contact1Y + ContactDia/2)])
rotate([90,0,0])
Contact();
translate([+(ContactGapX/2 + ContactDia/2),0,(Contact2Y + ContactDia/2)])
rotate([90,0,0])
Contact();
translate([CaseOverallWidth/2,HTCableOffset,(Length - HTCableDia/4)])
rotate([0,90,0])
cube([(HTCableDia/2 + Protrusion),HTCableDia,CaseOverallWidth],center=true);
translate([0,HTCableOffset,(Length - HTCableDia/2)])
rotate([0,90,0])
cylinder(r=(1/cos(30))*HTCableDia/2,h=CaseOverallWidth,$fn=6);
}
}
if (false)
if (Holes)
translate(LEDOffset) // support plug in LED window
rotate([90,90,0])
translate([-0.95*LEDWindow[0]/2,-0.80*LEDWindow[1]/2,ThreadWidth/2])
cube([0.95*LEDWindow[0],0.80*LEDWindow[1],2*ThreadWidth],center=false);
}
}
//-----
// Battery contact recess
// This gets subtracted from the bottom plate in two places
// Align points to print upward
module Contact() {
if (true)
union() { // vertical printing with case
translate([0,0,-(ContactRecess + Protrusion)/2])
PolyCyl(ContactDia,(ContactRecess + Protrusion),8);
translate([0,0,-(PlateThick + Protrusion)])
rotate(60/2)
PolyCyl(ContactStudDia,PlateThick,6);
translate([0,0,-(ContactRecess + ContactStudHeadThick/3)])
PolyCyl(ContactStudHead,ContactStudHeadThick,8); // allow for solder blob
}
else
union() { // horizontal printing alone
translate([0,0,-(ContactRecess - Protrusion)/2])
PolyCyl(ContactDia,(ContactRecess + Protrusion),8);
translate([0,0,-(PlateThick + Protrusion)])
PolyCyl(ContactStudDia,(PlateThick + 2*Protrusion));
translate([0,0,-(ContactRecess + ContactStudHeadThick/3)])
PolyCyl(ContactStudHead,ContactStudHeadThick,8); // allow for solder blob
}
}
//-----
// Radio bottom locating feature
// This polygon gets subtracted from the battery pack base
module RadioBase() {
linear_extrude(height=(BaseOpeningDepth + Protrusion),center=false,convexity=5)
polygon(points=[
[-BaseOpeningMax/2,-Protrusion],
[-BaseOpeningMin/2,BaseOpeningY],
[-(BaseToothOC/2 + BaseToothBase/2),BaseOpeningY],
[-(BaseToothOC/2 + BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
[-(BaseToothOC/2 - BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
[-(BaseToothOC/2 - BaseToothBase/2),BaseOpeningY],
[ (BaseToothOC/2 - BaseToothBase/2),BaseOpeningY],
[ (BaseToothOC/2 - BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
[ (BaseToothOC/2 + BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
[ (BaseToothOC/2 + BaseToothBase/2),BaseOpeningY],
[ BaseOpeningMin/2,BaseOpeningY],
[ BaseOpeningMax/2,-Protrusion],
[ (BaseTabOC + BaseTabWidth/2),-Protrusion],
[ (BaseTabOC + BaseTabWidth/2),BaseTabThick],
[ (BaseTabOC - BaseTabWidth/2),BaseTabThick],
[ (BaseTabOC - BaseTabWidth/2),-Protrusion],
[ BaseTabWidth/2,-Protrusion],
[ BaseTabWidth/2,BaseTabThick],
[-BaseTabWidth/2,BaseTabThick],
[-BaseTabWidth/2,-Protrusion],
[-(BaseTabOC + BaseTabWidth/2),-Protrusion],
[-(BaseTabOC + BaseTabWidth/2),BaseTabThick],
[-(BaseTabOC - BaseTabWidth/2),BaseTabThick],
[-(BaseTabOC - BaseTabWidth/2),-Protrusion],
],
convexity=5
);
}
//-----
// Battery pack base
module Base() {
difference() {
rotate([-90,180,0]) // main case shape
CaseShell(BaseTotalThick,false);
translate([0,0,BaseThick]) // radio base interface
RadioBase();
translate([0,0,BaseThick]) // tooth bevel
rotate([(-90 + BaseToothAngle),0,0])
translate([0,-0.5,0])
cube([(BaseToothSection + 2*Protrusion),1.0,10],center=true);
translate([-BaseWidthOuter, // surface slope
-(BaseThick + BaseEndLip)/tan(BaseEndAngle),0])
rotate([BaseEndAngle,0,0])
difference() {
cube([2*BaseWidthOuter,3*BaseOpeningY,BaseOpeningDepth],center=false);
translate([(BaseWidthOuter - (BaseToothSection + 2*Protrusion)/2),0,0])
cube([(BaseToothSection + 2*Protrusion),1.2*BaseOpeningY,BaseOpeningDepth],center=false);
}
for (x=[-1,1]) // alignment pin holes
translate([x*(CaseOverallWidth/2 - PinOffsetWidth),PinOffsetHeight,-Protrusion])
rotate(45) // align hole side with plate side
PolyCyl(PinDia,2*TopThick);
for (x=[-1,1]) // mounting setscews
translate([x*(CaseOverallWidth/2 - 3*Tap4_40),
TT3Offset,-Protrusion])
rotate(-360/(-5*4))
PolyCyl(Tap4_40,2*TopThick);
translate([(-SwitchBody[0]/2),TT3Offset,-SwitchBody[2]/2]) // mode switch
scale([1,1,2])
cube(SwitchBody);
}
}
//-----
// Top plate with latch
// Split around TinyTrak3 serial connector
// ... which must be at the same height as in the shell!
// The cable hole sizes & locations are entirely ad-hoc
module TopPlate() {
Cable1Dia = 5.0;
Cable2Dia = 5.0;
CableHoleLength = TopThick + 2*Protrusion;
CableHoleZ = -Protrusion;
DB9Plate = [32.0,13.5,1.25]; // plate surrounding connector body
difference() {
rotate([-90,180,180])
CaseShell(TopThick,false);
translate([0,-TT3Offset,-Protrusion])
DSubMin9(TopThick + 2*Protrusion);
translate([0,-TT3Offset,(TopThick - DB9Plate[2]/2)])
cube([DB9Plate[0],DB9Plate[1],(DB9Plate[2] + Protrusion)],center=true);
translate([-CaseOverallWidth,-SplitOffset,-2*Protrusion]) // split the plate
cube([2*CaseOverallWidth,4*Protrusion,(TopThick + 2*Protrusion)]);
translate([0,0,(TopThick - TopBevel)])
rotate([-TopBevelAngle,0,0])
translate([-CaseOverallWidth,-TopThick,0])
cube([2*CaseOverallWidth,2*TopThick,2*TopThick],center=false);
for (x=[-1,1])
translate([(x*TabOC/2),
(-TabHeight/2 + Protrusion),
(TopThick - TabEngageLength/2 + Protrusion/2)])
rotate([90,0,0])
cube([TabWidth,
(TabEngageLength + Protrusion),
(TabHeight + Protrusion)],center=true);
translate([-CaseOverallWidth,
-(TabEngageHeight + LatchBarWidth - BatteryClearance),
(TopThick - LatchBarDepth)])
cube([2*CaseOverallWidth,(LatchBarWidth + LatchBarThick),(LatchBarDepth + Protrusion)]);
for (x=[-1,1])
translate([(x*CaseOverallWidth/4),
-(TabEngageHeight + LatchBarWidth + Clear2_56/2 - BatteryClearance + Protrusion),
0]) {
translate([0,0,-Protrusion])
rotate(45) // align sides with slot
PolyCyl(Tap2_56,(TopThick + 2*Protrusion));
translate([0,0,(TopThick - LatchBarDepth)])
rotate(60) // align sides with slot
PolyCyl((Head2_56 + Protrusion),TopThick,6); // extra extra clearance
}
for (x=[-1,1])
translate([x*(CaseOverallWidth/2 - PinOffsetWidth),-PinOffsetHeight,-Protrusion])
rotate(45) // align hole side with plate side
PolyCyl(PinDia,2*TopThick);
for (x=[-1,1]) // coincidentally line up with latch tabs
translate([(x*TabOC/2),-(SplitOffset - 3.0),-Protrusion])
scale([1,1.7,1])
PolyCyl(Cable1Dia,CableHoleLength,6);
}
}
//-----
// Speaker-Mic plug mounting plate
module PlugPlate() {
JackOC = 11.20; // 14.25 OD - (3.58 + 2.58)/2
JackScrewDia = 4.6;
JackScrewOffsetX = 1.00;
JackScrewOffsetY = 5.25; // mounting screw to edge of lower recess
PlugBaseWidth = 9.25; // lower section of plate
PlugBaseLength = 22.0;
PlugBaseRadius = 1.75;
Plug3Offset = 5.25; // edge of base recess to 3.5 mm jack
Plug2BezelDia = 7.1; // 2.5 mm plug
Plug2BezelThick = 1.04;
Plug2ScrewDia = 6.0;
Plug3ScrewLength = 3.0;
Plug3BezelDia = 8.13; // 3.5 mm plug
Plug3BezelThick = 1.6;
Plug3ScrewDia = 7.95;
Plug3ScrewLength = 4.0;
PlugFillOffsetX = JackScrewOffsetX - 0.5; // base recess CL to fill CL
PlugFillOffsetY = -10.5; // ... to edge of fill plate
PlugFillWidth = 11.0;
PlugFillLength = 34.00;
PlugFillRadius1 = 1.5;
PlugFillRadius2 = 4.5;
PlugFillOffsetYTotal = 0;
BaseX = PlugBaseWidth/2 - PlugBaseRadius;
BaseY = PlugBaseLength/2 - PlugBaseRadius;
difference() {
union() {
linear_extrude(height=PlugBaseThick,center=false,convexity=3)
hull() {
translate([-BaseX,-BaseY,0])
circle(r=PlugBaseRadius,$fn=8);
translate([-BaseX, BaseY,0])
circle(r=PlugBaseRadius,$fn=8);
translate([ BaseX, BaseY,0])
circle(r=PlugBaseRadius,$fn=8);
translate([ BaseX,-BaseY,0])
circle(r=PlugBaseRadius,$fn=8);
}
translate([PlugFillOffsetX,
(PlugFillLength/2 - PlugBaseLength/2 + PlugFillOffsetY),
PlugBaseThick])
linear_extrude(height=PlugFillThick,center=false,convexity=5)
hull() {
translate([0,-(PlugFillLength/2 - PlugFillRadius2),0])
circle(r=PlugFillRadius2,$fn=10);
translate([-(PlugFillWidth/2 - PlugFillRadius1),-PlugBaseLength/2,0])
circle(r=PlugFillRadius1,$fn=8);
translate([-(PlugFillWidth/2 - PlugFillRadius1),
(PlugFillLength/2 - PlugFillRadius1),0])
circle(r=PlugFillRadius1,$fn=8);
translate([(PlugFillWidth/2 - PlugFillRadius1),
(PlugFillLength/2 - PlugFillRadius1),0])
circle(r=PlugFillRadius1,$fn=8);
translate([(PlugFillWidth/2 - PlugFillRadius1),-PlugBaseLength/2,0])
circle(r=PlugFillRadius1,$fn=8);
}
}
translate([0,-JackOC/2,-Protrusion])
rotate(360/16) {
PolyCyl(Plug3BezelDia,(Plug3BezelThick + Protrusion),8);
PolyCyl(Plug3ScrewDia,(PlugBaseThick + PlugFillThick + 2*Protrusion),8);
}
translate([0,+JackOC/2,-Protrusion])
rotate(360/16) {
PolyCyl(Plug2BezelDia,(Plug2BezelThick + Protrusion),8);
PolyCyl(Plug2ScrewDia,(PlugBaseThick + PlugFillThick + 2*Protrusion),8);
}
translate([JackScrewOffsetX,-(PlugBaseLength/2 + JackScrewOffsetY),0])
PolyCyl(JackScrewDia,(PlugBaseThick + PlugFillThick + Protrusion));
}
}
//-------------------
// Build things...
ShowPegGrid();
if (Layout == "TT3")
TinyTrak3();
if (Layout == "Audio")
AudioInterface();
if (Layout == "DSub")
DSubMin9();
if (Layout == "Shell")
CaseShell(CaseOverallLength);
if (Layout == "Top")
TopPlate();
if (Layout == "Base")
Base();
if (Layout == "RadioBase")
RadioBase();
if (Layout == "PlugPlate")
PlugPlate();
if (Layout == "Contact")
rotate([180,0,0])
Contact();
if (Layout == "Show" || Layout == "Fit") {
translate([0,-ShellLength/2,0]) {
translate([0,(Layout == "Show")?-ShowGap:0,0])
rotate([90,0,0])
color("SandyBrown") Base();
translate([0,0,0])
color("LightGreen") render() CaseShell();
translate([-(CaseOverallWidth/2 + 10),50,CaseOverallHeight/2])
rotate([0,-90,0])
color("Gold") PlugPlate();
translate([0,((Layout == "Show")?(ShellLength + ShowGap):ShellLength),0])
rotate([-90,0,0])
color("BurlyWood") TopPlate();
}
}
if (Layout == "Build1") {
translate([5 + CaseOverallHeight,0,0])
rotate([0,0,90])
Base();
translate([-(5 + CaseOverallHeight),0,0])
rotate(90)
TopPlate();
}
if (Layout == "Build2") {
translate([0,-CaseOverallHeight/2,ShellLength])
rotate([-90,0,0])
CaseShell();
}
if (Layout == "Build3") {
translate([0,0,(PlugBaseThick + PlugFillThick)])
rotate([180,0,0])
PlugPlate();
}