The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Category: Amateur Radio

Using and building radio gadgetry

  • Kenwood / Wouxun Headset Jack Spacing

    Wouxun plug mounting plate - overview
    Wouxun plug mounting plate – overview

    Try as I might, I cannot uncover a definitive answer to this simple question: What’s the center-to-center spacing of the mic and earphone jacks on the side of Kenwood and Wouxun HTs?

    The usual searches produce answers like 11 and 12 mm, both of which are obviously wrong, as can be determined eyeballometrically just by holding a scale against the plugs.

    Based on measurements I made on a Wouxun headset, the yellow plug mounting plate put the plugs on 11.2 mm centers and they fit into the KG-UV3D radio; it’s been working fine ever since.

    However, having just measured a speaker/mic and a headset, both from Kenwood, I come up with 11.5 mm. Frankly, I trust the Kenwood hardware a bit more: the plugs seem more rugged and the overall production values are higher.

    The calculation is simple: measure the pin diameters, then subtract half their sum from the outside distance across the pins. Cross-check by adding half the sum to the inside distance between the pins, which should give the same answer. It helps if the pins are actually round.

    The jacks in the Kenwood and Wouxun radios have enough compliance to accept either a Wouxun or a Kenwood headset plug without complaint. Maybe it doesn’t matter?

    Despite that, I made another gluing fixture with 11.5 mm spacing:

    Plug alignment plate - 11.5 mm spacing
    Plug alignment plate – 11.5 mm spacing

    Those are 0.1 inch grids; it’s a little bitty block of smoke-gray polycarbonate from the scrap heap. The plugs are nominally 3.5 mm (which is not 1/8 inch in this universe) and 2.5 mm, with clearance drills #28 and #39.

    Then I tried poking those 11.2 mm spaced plugs, now firmly epoxied in place in the yellow plate, and guess what: they don’t fit, no how no way. That’s not surprising, because there’s no compliance on either side of the joint and the plugs aren’t on the right centers for the fixture. Makes for a good No-Go gauge, I suppose.

    However, I think I’ll tweak the solid model spacing to 11.5 mm and run off another plug mounting plate for the next radio.

    FWIW, our ICOM IC-Z1A HTs use a sensible 10.0 mm spacing and that old fixture worked fine.

  • HT GPS+Voice: Battery Contacts

    For this version of the contacts (the old version is there) that make the GPS interface look like a standard Wouxun lithium battery, I left a bit more of the slot on the brass screw heads and increased the recess depth to compensate:

    HT-GPS Case - Battery contacts
    HT-GPS Case – Battery contacts

    The nuts all have fancy nickel plating, with washers & ring lugs silver-soldered in place:

    HT-GPS PCB - battery contact parts
    HT-GPS PCB – battery contact parts

    The trial fit looks OK:

    HT-GPS Case - PCB and battery contacts - end view
    HT-GPS Case – PCB and battery contacts – end view

    I even found the cutest little flat 1/4 inch wrench that fits 4-40 nuts, so I can do a better job of crunching the PCB between the nuts. That excess screw length has got to go, too…

  • HT GPS+Voice Circuitry: Bare PCB

    Drilling the PCB went fine, as did the etching & silver plating:

    PCB with edge wrap - front
    PCB with edge wrap – front

    The rear side has a fine ground plane:

    PCB with edge wrap - rear
    PCB with edge wrap – rear

    The small spots scattered over the rear mark vias that stitch the front and back planes together; lacking plated-through holes, I solder nippets of 24 AWG wires to both sides. The wrinkly edge comes from solder on the copper foil binding the entire perimeter.

    While I have no hard evidence that all of the fuss & bother matters, the most recent version of this circuit is the quietest yet: the machine noise from the TinyTrak3+ that plagued the first iteration has pretty much vanished.

    I’ll grant you that the silver plating doesn’t look very silvery in these pix, but it’s quite different from the bare copper in person. Here’s the front just after rubbing it in with a vigorous circular motion:

    HT-GPS PCB - raw plated - top
    HT-GPS PCB – raw plated – top
  • HT GPS+Voice Case: Latch Bar

    This iteration of the case latch has slightly larger brass tubing on the ends, hand filed to match the case angle:

    Shaping case latch bar
    Shaping case latch bar

    It’s pretty much the same process described there and is why I set up that slitting saw arbor for the next time.

    The final result looks pretty good:

    HT-GPS Case - Latch plate detail
    HT-GPS Case – Latch plate detail

    Those tubing snippets really must be two different lengths: the bar slides to the right (in that picture) to release the case, so:

    • The short tube and the notch must fit into the space between the edge of the case and the release slot.
    • The long tube slides outward, with a mark to indicate when the notches align with the release slots.

    In principle, you could slide the bar until the shorter tube jams against the latch ramp on the radio, but this case (plus the end caps) turned out to be exactly as long as the distance available and is a rather snug press fit. The next version will be 0.75 mm shorter and should fit better, although snug is good in this situation.

  • Wouxun HT GPS+Voice Case: Colors!

    Rather than print another green case, the new, improved case has orange end caps:

    HT-GPS Case - End caps on build plate
    HT-GPS Case – End caps on build plate

    And a blue shell that’s a bit easier on the eye:

    HT-GPS Case - Shell on build platform
    HT-GPS Case – Shell on build platform

    Put ’em together and it certainly looks peppy, doesn’t it?

    HT-GPS Case - trial fit
    HT-GPS Case – trial fit

    That’s a trial fit with nothing inside, of course.

    Next step: circuitry!

  • Wouxun KG-UV3D Battery Capacity

    After I get the next GPS+voice interface running on the (yet-to-be-bought) Wouxun KG-UV3D radio, a pair of reasonably new 1A17KG-3 7.4 V 1.7 A·h lithium battery packs will be floating around with nothing to do; the GPS interface connects an external battery to the radio, so there’s no need for the OEM battery.

    Before doing anything else, it’d be useful to know the actual capacity. The pack has flush terminals, so I snipped off two lengths of shield braid, jammed a wire into each one, and taped them in place:

    Battery pack - braid contacts
    Battery pack – braid contacts

    That obviously wasn’t going to last, so I added some closed-cell foam:

    Battery pack - foam compression
    Battery pack – foam compression

    And then, ever so gently, crunched a clamp around the whole mess:

    Battery Pack - clamped contacts
    Battery Pack – clamped contacts

    Crude, but workable, although the ragged start to the test showed I was too gentle. Another click of the clamp and everything settled down just fine:

    Wouxun Pack
    Wouxun Pack

    In round numbers, the pack delivers 1.6 A·h down to 7.0 V and then falls off very rapidly to the 6.0 V that ended the test.

    A string of three red / amber LEDs adds up to 3×1.9 = 5.7 V. A dumb DC blinky light running from 7.4 V has 77% efficiency, which isn’t all that bad, and 70% at the start. A current-regulating switcher might give 85% to 90% at the cost of considerable circuit complexity and wouldn’t be feasible for four independent blinky channels.

    The starting voltage, fresh from the charger, is just shy of 8.5 V, which is why I figured I could get away with 9 V from the external pack through the GPS interface. So far, so good.

    Obviously, if those packs are to be useful, I must conjure up a better battery holder. Having already designed a battery-shaped case for the GPS interface, it should be easy enough to build a radio-shaped mount for the pack.

  • Wouxun KG-UV3D GPS+Voice Interface: Improved Case

    This case has a few refinements beyond that one, but it’s recognizably a descendant. The main changes:

    • The HT cable port on the side has a nice polygonal roof to reduce overhang
    • The serial connector sits in a recess to allow a thicker top plate
    • Smaller opening for the LEDs; I’ll get a window in this one, fer shure, yeah
    • 4-40 screws hold the base plate on; setscrews may work and look better

    Looks like I’ll be using blue filament for this version, having just discovered the last of the weird colors in the bottom of the 5 gallon bucket serving as a storage bin.

    A view from the top:

    Solid Model - Oblique Exploded Top
    Solid Model – Oblique Exploded Top

    And from the base:

    Solid Model - Oblique Exploded Base
    Solid Model – Oblique Exploded Base

    The OpenSCAD source code:

    // Wouxun KB-UV3D Battery Pack Case
    // Ed Nisley KE4ZNU July 2012
    
    include </home/ed/Thing-O-Matic/lib/MCAD/units.scad>
    include </home/ed/Thing-O-Matic/Useful Sizes.scad>
    
    // Layout options
    
    Layout = "Show";
    					// Overall layout: Fit Show
    					// Printing plates: Build1 .. Buildn (see bottom!)
    					// Parts: TT3 Audio DSub Shell Base Top
    					// Shapes: RadioBase Contact
    					// Speaker-mic mount: PlugPlate
    
    ShowGap = 10;		// spacing between parts in Show layout
    
    //- Extrusion parameters must match reality!
    //  Print with +1 shells and 3 solid layers
    
    ThreadThick = 0.25;
    ThreadWidth = 2.0 * ThreadThick;
    
    HoleWindage = 0.2;
    
    function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
    
    Protrusion = 0.1;			// make holes end cleanly
    
    //----------------------
    // Dimensions
    
    CaseOverallHeight = 31.5;				// from battery surface, must clear PCBs!
    CaseOverallWidth = 56;
    CaseOverallLength = 80.25;				// inside of base to end of compartment
    
    BatteryClearance = 1.5;					// contact seal height = air gap to compartment
    
    // Interface to radio battery contacts
    //	Length = shell length
    //		calculated after everything else, so as to fill the compartment
    
    ContactDia = 6.0;				// use rounded contact for simplicity
    ContactRecess = IntegerMultiple(0.75,ThreadThick);	// recess for contact plate
    ContactGapX = 10.5;				// X space between contacts
    Contact1Y = 52.5;				// offset from base to edge of contact
    Contact2Y = 56.5;
    ContactStudDia = Clear4_40;
    ContactStudHead = IntegerMultiple(Head4_40,ThreadWidth);
    ContactStudHeadThick = Head4_40Thick;
    
    PlateWidthMin = 53.0;
    PlateWidthMax = 54.5;
    PlateThick = IntegerMultiple(ContactRecess + ContactStudHeadThick,ThreadThick);
    PlateAngle = atan(PlateThick/(PlateWidthMax/2 - PlateWidthMin/2));
    
    echo("Battery plate thick: ",PlateThick);
    
    // Offsets from battery surface to PCB centerlines
    //	TT3 must be above HT back shell for DB9 clearance
    //	These must cooperate with the numbers in the case shell module
    
    TT3Offset = 17.5 + PlateThick;
    AudioOffset = 4.0 + PlateThick;
    
    // Plate interface to base alignment holes and notches
    
    BaseWidthInner = PlateWidthMin;
    BaseWidthOuter = CaseOverallWidth;
    BaseLength = CaseOverallHeight;					// perpendicular to battery surface
    BaseThick = IntegerMultiple(1.0,ThreadThick);	// minimum sheet thickness below teeth
    BaseWidthTaper = 5.0;							// ramp across entire width
    
    BaseOpeningMax = 43.0;
    BaseOpeningMin = 33.0;
    BaseOpeningY = 5.3;
    BaseOpeningDepth = IntegerMultiple(2.25,ThreadThick);
    
    BaseTotalThick = BaseThick + BaseOpeningDepth;
    echo("Base min thick: ",BaseThick," total: " ,BaseTotalThick);
    
    BaseTabWidth = 6.0;
    BaseTabThick = 2.0;
    BaseTabGap = 7.0;
    BaseTabOC = BaseTabWidth + BaseTabGap;
    BaseToothSection = 3*BaseTabWidth + 2*BaseTabGap;
    
    BaseToothBase = 5.8;
    BaseToothTip = 2.8;
    BaseToothThick = 2.0;
    BaseToothAngle = atan(BaseOpeningDepth/0.6);
    BaseToothOC = BaseTabOC;
    
    WedgeAngle = atan(BaseWidthTaper/((BaseWidthOuter - BaseWidthInner)/2));
    
    BaseEndLip = ThreadThick;			// should be 0.25 mm or so
    BaseEndWidth = (PlateWidthMin - 3*BaseToothBase - 2*BaseToothTip)/2;
    BaseEndAngle = atan((BaseOpeningDepth - BaseEndLip)/BaseOpeningY);
    
    SwitchBody = [8.6,3.7,3.3];			// mode switch
    
    // Plate interface to HT battery latch, cables, and connectors
    
    TopThick = IntegerMultiple(5.5,ThreadThick);	// plate thickness for stiffness behind latch bar
    echo("Top plate thick: ",TopThick);
    
    DB9Recess = TopThick - 4.0;			// recess to max TT3 PCB clearance behind DB9 plate
    
    TabEngageLength = 1.6;				// tab engaging surface length
    TabWidth = 3.0;						//  ... width
    TabEngageHeight = 4.5;				//  ... above battery compartment floor
    TabHeight = 7.5;					// tab ramp top above battery compartment floor
    TabOC = 40.0;
    
    LatchBarWidth = 3.4;				// sliding latch mechanism (brass L stock)
    LatchBarDepth = 3.4;
    LatchBarThick = 0.35;
    
    echo(" ... minimum: ",TopThick - LatchBarDepth);
    
    SplitOffset = TT3Offset - 3.5;
    
    TopBevel = 1.0;						// bevel at top of battery compartment
    TopBevelAngle = 45;
    
    PinOffsetWidth = 2.5;				// choose to center in sides of case shell
    PinOffsetHeight = 13.5;				// above baseplate bottom
    PinDepth = 7.0;						// into case shell
    PinDia = 1.2;
    
    ShellLength = CaseOverallLength - BaseThick - TopThick;
    
    echo("Shell length: ",ShellLength);
    
    // Speaker-mic plug plate
    
    PlugBaseThick = 2.5;				// recess depth
    PlugFillThick = 3.0;				// outer plate thickness
    
    //----------------------
    // Useful routines
    
    module PolyCyl(Dia,Height,ForceSides=0) {			// based on nophead's polyholes
    
    Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
    
    FixDia = Dia / cos(180/Sides);
    
    cylinder(r=(FixDia + HoleWindage)/2,
    h=Height,
    	   $fn=Sides);
    }
    
    module ShowPegGrid(Space = 10.0,Size = 1.0) {
    
    Range = floor(50 / Space);
    
    	for (x=[-Range:Range])
    	  for (y=[-Range:Range])
    		translate([x*Space,y*Space,Size/2])
    		  %cube(Size,center=true);
    
    }
    
    //-------------------
    // Component parts
    
    //-----
    // TinyTrak3+ PCB and component envelope
    //	Some dimensions should feed into the case shell, but don't
    
    module TinyTrak3(Length = 1.0) {
    
    PCBThick = 1.6;
    PCBWide = 36.5;
    TopHigh = 9.5;
    TopWide = PCBWide - 1.5;
    BotHigh = 2.5;
    BotWide = 35.0;
    
    PCBx = PCBWide/2;
    PCBy = (PCBThick + HoleWindage)/2;
    URx = TopWide/2;
    URy = PCBy + TopHigh;
    LRx = BotWide/2;
    LRy = PCBy + BotHigh;
    
    linear_extrude(height=Length,center=false,convexity=2) {
    	polygon(points=[[URx,URy],[URx,PCBy],[PCBx,PCBy],[PCBx,-PCBy],[LRx,-PCBy],[LRx,-LRy],
    					[-LRx,-LRy],[-LRx,-PCBy],[-PCBx,-PCBy],[-PCBx,PCBy],[-URx,PCBy],[-URx,URy]
    				   ]);
    }
    }
    
    //-----
    // Interface PCB and component envelope
    //	Some dimensions should feed into the case shell, but don't
    
    module AudioInterface(Length = 1.0) {
    
    PCBThick = 2.0;
    PCBWide = 49.5;
    TopHigh = 9.0 + Protrusion;
    TopWide = 46.0;
    BotHigh = 3.0;
    BotWide = 44.0;
    
    PCBx = PCBWide/2;
    PCBy = (PCBThick + HoleWindage)/2;
    URx = TopWide/2;
    URy = PCBy + TopHigh;
    LRx = BotWide/2;
    LRy = PCBy + BotHigh;
    
    linear_extrude(height=Length,center=false,convexity=2) {
    	polygon(points=[[URx,URy],[URx,PCBy],[PCBx,PCBy],[PCBx,-PCBy],[LRx,-PCBy],[LRx,-LRy],
    					[-LRx,-LRy],[-LRx,-PCBy],[-PCBx,-PCBy],[-PCBx,PCBy],[-URx,PCBy],[-URx,URy]
    				   ]);
    }
    }
    
    //-----
    // DB-9 (DE-9) panel opening
    // http://www.interfacebus.com/Connector_D-Sub_Mechanical_Dimensions.html
    //  DB-9 shell mounts on outside surface of case
    // This is for the solder terminal side
    
    module DSubMin9(Length = 1.0) {
    
    Holex = 0.984/2 * inch;
    HoleDia = Tap4_40;
    
    URx = 0.769/2 * inch;
    URy = 0.432/2 * inch;
    
    	linear_extrude(height=Length,center=false,convexity=3) {
    	  polygon(points=[[URx,URy],[URx,-URy],[-URx,-URy],[-URx,URy]]);
    	  for (x = [-1,1]) {
    		translate([x*Holex,0,0])
    		  rotate(45) circle(r=(HoleDia + HoleWindage)/2,$fn=4);
    	  }
    	}
    
    }
    
    //-----
    // Central case shape
    //	This *should* depend directly on the circuit board sizes, but doesn't
    //	The "Offset" parameters attempt to bottle up all the board sizes
    //	Support in LED window must be hand-fit to work correctly... and isn't needed!
    
    module CaseShell(Length=(ShellLength),Holes="true") {
    
    // Polygon coordinates are in XY plane
    
    URx = 40.0/2;
    URy = CaseOverallHeight;
    
    MRx = CaseOverallWidth/2;
    MRy = 15.0;
    
    LRx = CaseOverallWidth/2;
    LRy = (LRx - PlateWidthMin/2)*tan(PlateAngle);
    
    BRx = PlateWidthMax/2;
    BRy = PlateThick - 0*Protrusion;
    
    PRx = PlateWidthMin/2;				// combined battery plate
    PRy = 0;
    
    ScrewOffset = 20.0;					// from top end of case
    
    LEDWindow = [26.0,5.0,6];			// with case aligned vertically
    LEDOffset = [15,URy,(Length + TopThick - 25.0)];
    
    TrimPot1 = [-14,TT3Offset,(Length + TopThick - 30)];
    TrimPot2 = [-14,TT3Offset,(Length + TopThick - 37.5)];
    
    HTCableDia = 3.5;
    HTCableOffset = AudioOffset + HTCableDia/2 + 1.0;
    
    rotate([90,0,180])
    	union() {
    	  difference() {
    
    		  linear_extrude(height=Length,center=false,convexity=5)
    			polygon(points=[[URx,URy],[MRx,MRy],[LRx,LRy],[BRx,BRy],[PRx,PRy],
    							[-PRx,PRy],[-BRx,BRy],[-LRx,LRy],[-MRx,MRy],[-URx,URy]]);
    
    		if (Holes) {
    		  translate([0,AudioOffset,-Protrusion])
    			AudioInterface(Length + 2*Protrusion);
    
    		  translate([0,TT3Offset,-Protrusion])
    			TinyTrak3(Length + 2*Protrusion);
    
    		  for (y = [TT3Offset,AudioOffset])
    			translate([-CaseOverallWidth,y,(Length - ScrewOffset)])
    			  rotate([0,90,0])
    				rotate(0)					// Z rotation puts point upward for printing
    				PolyCyl(Tap4_40,CaseOverallWidth);
    
    		  translate(LEDOffset)
    			rotate([90,90,0])
    			  translate([-LEDWindow[0]/2,-LEDWindow[1]/2,-Protrusion])
    			  cube(LEDWindow,center=false);
    
    		  for (p = [TrimPot1,TrimPot2])
    			translate(p)
    			  rotate([-90,90,0])				// Y rotation puts point upward for printing
    				PolyCyl(3.0,URy);
    
    		  for (x=[-1,1]) {
    			translate([x*(CaseOverallWidth/2 - PinOffsetWidth),
    					  PinOffsetHeight,
    					  (Length - PinDepth)])
    			  rotate(45)						// align hole sides with case sides
    				  PolyCyl(PinDia,2*TopThick);
    			translate([x*(CaseOverallWidth/2 - PinOffsetWidth),
    					  PinOffsetHeight,
    					  -PlateThick])
    			  rotate(45)						// align hole sides with case sides
    				  PolyCyl(PinDia,(PlateThick + PinDepth));
    		  }
    
    		  for (x=[-1,1])						// setscrews to secure base plate
    			translate([x*(CaseOverallWidth/2 - 3*Tap4_40),
    					  TT3Offset,-Protrusion])
    			  rotate(360/(5*4))
    				PolyCyl(Tap4_40,2*TopThick);
    
    		  translate([-(ContactGapX/2 + ContactDia/2),0,(Contact1Y + ContactDia/2)])
    			rotate([90,0,0])
    			  Contact();
    		  translate([+(ContactGapX/2 + ContactDia/2),0,(Contact2Y + ContactDia/2)])
    			rotate([90,0,0])
    			  Contact();
    
    		  translate([CaseOverallWidth/2,HTCableOffset,(Length - HTCableDia/4)])
    			rotate([0,90,0])
    			  cube([(HTCableDia/2 + Protrusion),HTCableDia,CaseOverallWidth],center=true);
    		  translate([0,HTCableOffset,(Length - HTCableDia/2)])
    			rotate([0,90,0])
    			  cylinder(r=(1/cos(30))*HTCableDia/2,h=CaseOverallWidth,$fn=6);
    		}
    	  }
    
    if (false)
    	  if (Holes)
    		translate(LEDOffset)						// support plug in LED window
    		  rotate([90,90,0])
    			translate([-0.95*LEDWindow[0]/2,-0.80*LEDWindow[1]/2,ThreadWidth/2])
    			  cube([0.95*LEDWindow[0],0.80*LEDWindow[1],2*ThreadWidth],center=false);
    
    	}
    
    }
    
    //-----
    // Battery contact recess
    //  This gets subtracted from the bottom plate in two places
    // 	Align points to print upward
    
    module Contact() {
    
    if (true)
    union() {													// vertical printing with case
    	translate([0,0,-(ContactRecess + Protrusion)/2])
    	  PolyCyl(ContactDia,(ContactRecess + Protrusion),8);
    	translate([0,0,-(PlateThick + Protrusion)])
    	  rotate(60/2)
    	  PolyCyl(ContactStudDia,PlateThick,6);
    	translate([0,0,-(ContactRecess + ContactStudHeadThick/3)])
    	  PolyCyl(ContactStudHead,ContactStudHeadThick,8);				// allow for solder blob
    }
    else
    union() {												// horizontal printing alone
    	translate([0,0,-(ContactRecess - Protrusion)/2])
    	  PolyCyl(ContactDia,(ContactRecess + Protrusion),8);
    	translate([0,0,-(PlateThick + Protrusion)])
    	  PolyCyl(ContactStudDia,(PlateThick + 2*Protrusion));
    	translate([0,0,-(ContactRecess + ContactStudHeadThick/3)])
    	  PolyCyl(ContactStudHead,ContactStudHeadThick,8);				// allow for solder blob
    }
    
    }
    
    //-----
    // Radio bottom locating feature
    //  This polygon gets subtracted from the battery pack base
    
    module RadioBase() {
    
    linear_extrude(height=(BaseOpeningDepth + Protrusion),center=false,convexity=5)
    polygon(points=[
    			[-BaseOpeningMax/2,-Protrusion],
    
    			[-BaseOpeningMin/2,BaseOpeningY],
    			[-(BaseToothOC/2 + BaseToothBase/2),BaseOpeningY],
    
    			[-(BaseToothOC/2 + BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
    			[-(BaseToothOC/2 - BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
    			[-(BaseToothOC/2 - BaseToothBase/2),BaseOpeningY],
    
    			[ (BaseToothOC/2 - BaseToothBase/2),BaseOpeningY],
    			[ (BaseToothOC/2 - BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
    			[ (BaseToothOC/2 + BaseToothTip/2),(BaseOpeningY - BaseToothThick)],
    			[ (BaseToothOC/2 + BaseToothBase/2),BaseOpeningY],
    			[ BaseOpeningMin/2,BaseOpeningY],
    
    			[ BaseOpeningMax/2,-Protrusion],
    
    			[ (BaseTabOC + BaseTabWidth/2),-Protrusion],
    			[ (BaseTabOC + BaseTabWidth/2),BaseTabThick],
    			[ (BaseTabOC - BaseTabWidth/2),BaseTabThick],
    			[ (BaseTabOC - BaseTabWidth/2),-Protrusion],
    
    			[ BaseTabWidth/2,-Protrusion],
    			[ BaseTabWidth/2,BaseTabThick],
    			[-BaseTabWidth/2,BaseTabThick],
    			[-BaseTabWidth/2,-Protrusion],
    
    			[-(BaseTabOC + BaseTabWidth/2),-Protrusion],
    			[-(BaseTabOC + BaseTabWidth/2),BaseTabThick],
    			[-(BaseTabOC - BaseTabWidth/2),BaseTabThick],
    			[-(BaseTabOC - BaseTabWidth/2),-Protrusion],
    		  ],
    		  convexity=5
    );
    }
    
    //-----
    // Battery pack base
    
    module Base() {
    
    difference() {
    
    	rotate([-90,180,0])						// main case shape
    	  CaseShell(BaseTotalThick,false);
    
    	translate([0,0,BaseThick])				// radio base interface
    	  RadioBase();
    
    	translate([0,0,BaseThick])				// tooth bevel
    	  rotate([(-90 + BaseToothAngle),0,0])
    		translate([0,-0.5,0])
    		  cube([(BaseToothSection + 2*Protrusion),1.0,10],center=true);
    
    	translate([-BaseWidthOuter,				// surface slope
    			  -(BaseThick + BaseEndLip)/tan(BaseEndAngle),0])
    	  rotate([BaseEndAngle,0,0])
    		difference() {
    		  cube([2*BaseWidthOuter,3*BaseOpeningY,BaseOpeningDepth],center=false);
    		  translate([(BaseWidthOuter - (BaseToothSection + 2*Protrusion)/2),0,0])
    			cube([(BaseToothSection + 2*Protrusion),1.2*BaseOpeningY,BaseOpeningDepth],center=false);
    		}
    
    	for (x=[-1,1])							// alignment pin holes
    	  translate([x*(CaseOverallWidth/2 - PinOffsetWidth),PinOffsetHeight,-Protrusion])
    		rotate(45)							// align hole side with plate side
    		  PolyCyl(PinDia,2*TopThick);
    
    	for (x=[-1,1])							// mounting setscews
    	  translate([x*(CaseOverallWidth/2 - 3*Tap4_40),
    				TT3Offset,-Protrusion])
    		rotate(-360/(-5*4))
    		  PolyCyl(Tap4_40,2*TopThick);
    
    	translate([(-SwitchBody[0]/2),TT3Offset,-SwitchBody[2]/2])	// mode switch
    	  scale([1,1,2])
    		cube(SwitchBody);
    
    }
    }
    
    //-----
    // Top plate with latch
    //	Split around TinyTrak3 serial connector
    //	 ... which must be at the same height as in the shell!
    //	The cable hole sizes & locations are entirely ad-hoc
    
    module TopPlate() {
    
    Cable1Dia = 5.0;
    Cable2Dia = 5.0;
    CableHoleLength = TopThick + 2*Protrusion;
    CableHoleZ = -Protrusion;
    
    DB9Plate = [32.0,13.5,1.25];					// plate surrounding connector body
    
    difference() {
    
    	rotate([-90,180,180])
    	  CaseShell(TopThick,false);
    
    	translate([0,-TT3Offset,-Protrusion])
    	  DSubMin9(TopThick + 2*Protrusion);
    
    	translate([0,-TT3Offset,(TopThick - DB9Plate[2]/2)])
    	  cube([DB9Plate[0],DB9Plate[1],(DB9Plate[2] + Protrusion)],center=true);
    
    	translate([-CaseOverallWidth,-SplitOffset,-2*Protrusion])		// split the plate
    	  cube([2*CaseOverallWidth,4*Protrusion,(TopThick + 2*Protrusion)]);
    
    	translate([0,0,(TopThick - TopBevel)])
    	  rotate([-TopBevelAngle,0,0])
    		translate([-CaseOverallWidth,-TopThick,0])
    		  cube([2*CaseOverallWidth,2*TopThick,2*TopThick],center=false);
    
    	for (x=[-1,1])
    	  translate([(x*TabOC/2),
    				(-TabHeight/2 + Protrusion),
    				(TopThick - TabEngageLength/2 + Protrusion/2)])
    		rotate([90,0,0])
    		  cube([TabWidth,
    				(TabEngageLength + Protrusion),
    				(TabHeight + Protrusion)],center=true);
    
    	translate([-CaseOverallWidth,
    			  -(TabEngageHeight + LatchBarWidth - BatteryClearance),
    			  (TopThick - LatchBarDepth)])
    	  cube([2*CaseOverallWidth,(LatchBarWidth + LatchBarThick),(LatchBarDepth + Protrusion)]);
    
    	for (x=[-1,1])
    	  translate([(x*CaseOverallWidth/4),
    				-(TabEngageHeight + LatchBarWidth + Clear2_56/2 - BatteryClearance + Protrusion),
    				0]) {
    		translate([0,0,-Protrusion])
    		  rotate(45)						// align sides with slot
    			PolyCyl(Tap2_56,(TopThick + 2*Protrusion));
    		translate([0,0,(TopThick - LatchBarDepth)])
    		  rotate(60)						// align sides with slot
    			PolyCyl((Head2_56 + Protrusion),TopThick,6);		// extra extra clearance
    	  }
    
    	for (x=[-1,1])
    	  translate([x*(CaseOverallWidth/2 - PinOffsetWidth),-PinOffsetHeight,-Protrusion])
    		rotate(45)						// align hole side with plate side
    		  PolyCyl(PinDia,2*TopThick);
    
    	for (x=[-1,1])						// coincidentally line up with latch tabs
    	  translate([(x*TabOC/2),-(SplitOffset - 3.0),-Protrusion])
    		scale([1,1.7,1])
    		  PolyCyl(Cable1Dia,CableHoleLength,6);
    }
    
    }
    
    //-----
    // Speaker-Mic plug mounting plate
    
    module PlugPlate() {
    
    JackOC = 11.20;						// 14.25 OD - (3.58 + 2.58)/2
    
    JackScrewDia = 4.6;
    JackScrewOffsetX = 1.00;
    JackScrewOffsetY = 5.25;			//  mounting screw to edge of lower recess
    
    PlugBaseWidth = 9.25;				// lower section of plate
    PlugBaseLength = 22.0;
    PlugBaseRadius = 1.75;
    
    Plug3Offset = 5.25;					// edge of base recess to 3.5 mm jack
    
    Plug2BezelDia = 7.1;				// 2.5 mm plug
    Plug2BezelThick = 1.04;
    Plug2ScrewDia = 6.0;
    Plug3ScrewLength = 3.0;
    
    Plug3BezelDia = 8.13;				// 3.5 mm plug
    Plug3BezelThick = 1.6;
    Plug3ScrewDia = 7.95;
    Plug3ScrewLength = 4.0;
    
    PlugFillOffsetX = JackScrewOffsetX - 0.5;		// base recess CL to fill CL
    PlugFillOffsetY = -10.5;				//  ... to edge of fill plate
    PlugFillWidth = 11.0;
    PlugFillLength = 34.00;
    PlugFillRadius1 = 1.5;
    PlugFillRadius2 = 4.5;
    
    PlugFillOffsetYTotal = 0;
    
    BaseX = PlugBaseWidth/2 - PlugBaseRadius;
    BaseY = PlugBaseLength/2 - PlugBaseRadius;
    
    difference() {
    	union() {
    	  linear_extrude(height=PlugBaseThick,center=false,convexity=3)
    		hull() {
    		  translate([-BaseX,-BaseY,0])
    			circle(r=PlugBaseRadius,$fn=8);
    		  translate([-BaseX, BaseY,0])
    			circle(r=PlugBaseRadius,$fn=8);
    		  translate([ BaseX, BaseY,0])
    			circle(r=PlugBaseRadius,$fn=8);
    		  translate([ BaseX,-BaseY,0])
    			circle(r=PlugBaseRadius,$fn=8);
    		}
    
    	  translate([PlugFillOffsetX,
    				(PlugFillLength/2 - PlugBaseLength/2 + PlugFillOffsetY),
    				PlugBaseThick])
    		linear_extrude(height=PlugFillThick,center=false,convexity=5)
    		  hull() {
    			translate([0,-(PlugFillLength/2 - PlugFillRadius2),0])
    			  circle(r=PlugFillRadius2,$fn=10);
    			translate([-(PlugFillWidth/2 - PlugFillRadius1),-PlugBaseLength/2,0])
    			  circle(r=PlugFillRadius1,$fn=8);
    			translate([-(PlugFillWidth/2 - PlugFillRadius1),
    					  (PlugFillLength/2 - PlugFillRadius1),0])
    			  circle(r=PlugFillRadius1,$fn=8);
    			translate([(PlugFillWidth/2 - PlugFillRadius1),
    					  (PlugFillLength/2 - PlugFillRadius1),0])
    			  circle(r=PlugFillRadius1,$fn=8);
    			translate([(PlugFillWidth/2 - PlugFillRadius1),-PlugBaseLength/2,0])
    			  circle(r=PlugFillRadius1,$fn=8);
    		  }
    	}
    
    	translate([0,-JackOC/2,-Protrusion])
    	  rotate(360/16) {
    		PolyCyl(Plug3BezelDia,(Plug3BezelThick + Protrusion),8);
    		PolyCyl(Plug3ScrewDia,(PlugBaseThick + PlugFillThick + 2*Protrusion),8);
    	  }
    
    	translate([0,+JackOC/2,-Protrusion])
    	  rotate(360/16) {
    		PolyCyl(Plug2BezelDia,(Plug2BezelThick + Protrusion),8);
    		PolyCyl(Plug2ScrewDia,(PlugBaseThick + PlugFillThick + 2*Protrusion),8);
    	  }
    
    	translate([JackScrewOffsetX,-(PlugBaseLength/2 + JackScrewOffsetY),0])
    	  PolyCyl(JackScrewDia,(PlugBaseThick + PlugFillThick + Protrusion));
    }
    
    }
    
    //-------------------
    // Build things...
    
    ShowPegGrid();
    
    if (Layout == "TT3")
    TinyTrak3();
    
    if (Layout == "Audio")
    AudioInterface();
    
    if (Layout == "DSub")
    DSubMin9();
    
    if (Layout == "Shell")
    CaseShell(CaseOverallLength);
    
    if (Layout == "Top")
    TopPlate();
    
    if (Layout == "Base")
    Base();
    
    if (Layout == "RadioBase")
    RadioBase();
    
    if (Layout == "PlugPlate")
    PlugPlate();
    
    if (Layout == "Contact")
    rotate([180,0,0])
    	Contact();
    
    if (Layout == "Show" || Layout == "Fit") {
    
    translate([0,-ShellLength/2,0]) {
    
    	translate([0,(Layout == "Show")?-ShowGap:0,0])
    	  rotate([90,0,0])
    		color("SandyBrown") Base();
    
    	translate([0,0,0])
    	    color("LightGreen") render() CaseShell();
    
    	translate([-(CaseOverallWidth/2 + 10),50,CaseOverallHeight/2])
    	  rotate([0,-90,0])
    		color("Gold") PlugPlate();
    
    	translate([0,((Layout == "Show")?(ShellLength + ShowGap):ShellLength),0])
    	  rotate([-90,0,0])
    		color("BurlyWood") TopPlate();
    }
    }
    
    if (Layout == "Build1") {
    
    translate([5 + CaseOverallHeight,0,0])
    	rotate([0,0,90])
    	  Base();
    
    translate([-(5 + CaseOverallHeight),0,0])
    	rotate(90)
    	  TopPlate();
    
    }
    
    if (Layout == "Build2") {
    
    translate([0,-CaseOverallHeight/2,ShellLength])
    	rotate([-90,0,0])
    		CaseShell();
    
    }
    
    if (Layout == "Build3") {
    
    translate([0,0,(PlugBaseThick + PlugFillThick)])
    	rotate([180,0,0])
    	  PlugPlate();
    
    }