Thing-O-Matic / MK5 Extruder: Uninsulated Heating

The objective here is to determine the thermal coefficient between the resistors and the Thermal Core, with no thermal compound to fill the air gap, so we know how high the resistor temperature will get.

The Thermal Core sprouted many thermocouples:

Name Meter Location
TOM MK5 t-couple Front of core
T1 Fluke 52 Resistor
T2 Fluke 52 Core edge adjacent to resistor
CA Craftsman A Top of core
CB Craftsman B Bottom of core
MPJA MPJA meter Heatsink on thermal tube
TOM with meters
TOM with meters

They’re positioned as shown here, with the Bottom thermocouple to the rear out of view. The ribbed black heatsink at the very top of the picture is a few millimeters below the acrylic base of the Extruder Filament Drive block.

Thermal test setup
Thermal test setup

Applying power from a bench supply produced these results, adjusted to the average value using the regression coefficients determined there. The measurements occur every ten minutes: the Core’s time constant is, mmm, languid.

Adjusted Data
Power TOM T1 T2 CA CB MPJA
0 20.5 20.9 21.3 21.1 22.3 21.0
1 27.9 30.4 28.8 28.9 29.0 22.7
1 32.1 33.7 32.2 32.2 32.3 24.8
1 33.2 35.6 34.1 33.9 34.0 26.5
1 34.2 36.3 34.8 34.4 34.5 27.0
2 41.6 45.4 42.3 41.6 41.2 29.7
2 44.7 48.2 45.1 44.4 44.5 31.4
2 45.8 49.1 46.0 45.5 45.0 31.9
2 46.8 50.5 47.5 46.6 46.1 33.0
4 59.5 67.2 60.8 59.4 58.3 36.8
4 65.8 72.1 66.1 64.4 63.3 40.6
4 67.9 74.3 68.6 66.6 65.5 43.3
4 67.9 75.0 69.2 67.7 66.1 44.4
8 81.6 92.0 83.5 81.6 79.4 49.3
8 86.9 (*) 88.9 86.6 83.8 52.5

The asterisk marks the spot where a clip lead shifted and dislodged the brass tube epoxied to the resistor. Of course, that’s one of the two absolutely vital temperature measurements, but so it goes. I was planning to stop at 8 W, anyway, because that’s about as much power as I wanted to apply to the resistor, as it exceeds the rated power for that temperature.

The boldified lines mark the measurements where the Core temperature has stabilized, where I defined “stabilized” to mean “hasn’t changed all that much since the last measurement”.

Some temperature differences between interesting locations on the Thermal Core, bearing in mind that the linear regression equations aren’t good for much below 1 °C, at best, so the tiny differences are mostly noise.

Temperature Differences
Power R – Edge Core T-B Edge-Bot Top-Heatsink R – Amb Edge – Amb
0 -0.4 -1.2 -1.0 0.1 0.0 0.0
1 1.7 -0.1 -0.2 6.2 9.5 7.4
1 1.5 -0.1 -0.1 7.4 12.8 10.9
1 1.4 -0.1 0.2 7.4 14.7 12.8
1 1.4 -0.1 0.3 7.4 15.4 13.5
2 3.1 0.5 1.1 11.9 24.5 20.9
2 3.1 -0.1 0.6 13.1 27.3 23.8
2 3.1 0.5 1.0 13.6 28.2 24.7
2 3.0 0.5 1.4 13.6 29.6 26.2
4 6.4 1.1 2.5 22.6 46.3 39.5
4 5.9 1.1 2.8 23.8 51.2 44.8
4 5.7 1.1 3.0 23.3 53.4 47.2
4 5.8 1.6 3.1 23.3 54.1 47.8
8 8.5 2.2 4.1 32.3 71.1 62.1
8 2.8 5.1 34.0 67.5

The Top – Heatsink column says there’s really not much temperature difference between the Core and the cute little heatsink on the Thermal Tube at the top. This is without any Core insulation, but it’s also at a a much lower Core temperature.

And now for the heart of the matter: the thermal coefficients, which are the temperature differences divided by the applied power. These are for the boldified lines above, where the temperatures have stabilized.

These are not, strictly speaking, correct, because the only interface where we know the applied power lies between the resistor and the Thermal Core. But we’ll do the best we can with what we have…

Thermal coefficients
R – Edge Core T-B Edge-Bot Top-Heatsink R – Amb Edge – Amb
1 W 1.4 -0.1 0.3 7.4 15.4 13.5
2 W 1.5 0.2 0.7 6.8 14.8 13.1
4 W 1.5 0.4 0.8 5.8 13.5 12.0

The R – Edge column shows that the resistor-to-Core thermal coefficient hovers around 1.5 °C/W, which means dissipating 30 W in the resistor raises its temperature 45 °C above the Core. With the Core stabilized at 225 °C, the resistors run at 270 °C, far beyond their absolute maximum rating of 250 °C where the rated power drops to 1 W.

That’s why MK5 Extruder resistors fail at such a disturbing rate.

The next two columns show the relatively small temperature differences across the the Thermal Core iself: that steel block is pretty much isothermal, even with only a single resistor providing power to one side. That’s good news, of a sort: clamping the MK5 thermocouple anywhere on the Core will provide consistent results.

The Top – Heatsink coefficient declines as the power level rises, probably because of the hot air rising from the uninsulated Core.

The R – Amb and Edge – Amb columns shows that air is a pretty good insulator all by itself. If you apply 30 W to the resistor and extrapolate a 10 °C/W thermal coefficient, the resistor would reach something like 300 °C above ambient, even without insulation. Obviously, that wouldn’t work for long, but those are the numbers.

Up next: wrap some insulation around the Core…

4 thoughts on “Thing-O-Matic / MK5 Extruder: Uninsulated Heating

  1. I’ve been following the resistor issue with great interest. I’m glad I’m not completely crazy – I questioned the 5W resistors when I put my ToM together. However, my spur-of-the-moment guesstimate of using a pair of 100w resistors looks to be way off. My electronics knowledge is largely self-taught, so there is probably something I’m not considering, but it appears that we would need at least a 700W 5 ohm resistor (not that such a beast exists) in order to safely dissipate 28 watts at 270c with an uninsulated core. Is that a fair assessment?

    1. Yup, but the answer is that a resistor isn’t the right hammer for extreme heating.

      The good folks at Makerbot and I are both looking at cartridge heaters, which are the right hammer for the job. Fitting them into the space and voltage available is the tricky part… but isn’t an impossible problem.

      Cartridge heaters are dramatically more expensive than a resistor, though, so I can understand why MBI didn’t use them on the first go-round. Evidently the resistors worked fine on the first TOM prototypes, so (as with all design whoopsies) the problems surface later on… and here we are!

  2. Yeah that’s where I was going, although my outlook was a little more bleak. :) I’ve never heard of a cartridge heater, so that was an interesting read. Thanks for putting the time into this!

Comments are closed.