Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.
Vibration is a real killer for bike-mounted hardware. The antenna mast on my bike has been unscrewing itself, despite my repeated attempts to tighten it. Fortunately, I’ve managed to notice the rattle before the mast falls off into traffic.
We’ll see if a dab of medium strength (blue) Loctite will do the job.
One thing to worry about: this is an electrical as well as a mechanical joint. I hope there’s still enough metal-to-metal contact to get RF energy to the radiating part of the whip!
[Update: Yup, works just like you’d expect. Problem solved.]
The antennas on the other two bikes have remained tight, so maybe it’s just that my riding style generates more vibration? Hard to imagine; it’s not like I venture off-road.
More details on the homebrew mount are there and how commercial mounts fail are there.
The unsightly masking tape wrap is where I attached a reflector for a (rare) after-dark ride a while ago. Making a set of bushings for the reflector clamps is a low-priority job in the queue right now.
Bezel bottom 3.3 mm thick, excluding depression on bottom surface
Screw head sticks out of depression 0.9 mm
Some deft work on the bezel installed in the camera, using the blunt end of a transfer punch, a pin vise, and a calculator reveals these protrusions:
1.4 mm does not trigger anything
2.1 mm triggers the half-pushed focus action
2.4 mm reliably triggers the shutter
So the new stem can stick out about 1.4 mm when the button is released and must not stick out more than 2.4 mm with the button fully depressed: a whopping 1 mm of travel!
Eyeballing the shutter release on my DSC-H5, that seems to be about right. I think it has more travel between “released” and “half pressed” than those measurements indicate, but it’s close. And sloppy, too: the H5’s button has a lot of side-to-side wobble, indicating that the stem is not a close fit in the bezel hole.
The screw head is 3 mm dia after being turned down and that’s about the right size for the nut that will adjust the travel distance, as it must fit into the recess in the bezel. The nut sets the protrusion when the shutter button is released: 1.4 mm.
The distance from the shutter button’s bottom to the bezel sets the travel from “released” to “click”: 1 mm, more or less. They’re held apart by the spring, so that’s the default state.
Circular Milling the Nut
I re-centered the 3-jaw chuck under the spindle, put a 1-72 nut on the turned-down screw, and applied some gentle manual CNC to convert the nut from a hex to a disk. The trick is to approach the nut from the right side (the +X side) and go clockwise around it (climb milling), so that the cutting force tends to jam the nut against the screw head. Do it the other way and the nut will zip downward away from the cutter
Surprisingly, I got that right the first time.
Using a 2 mm end mill and figuring a 2.9 mm final diameter, the radius of the circle to move the end mill around the nut is: R = (2.9 + 2.0) / 2
So the G-code for one pass looks like:
#<R>=[[2.9+2.0]/2]
G1 X#<R> F150
G2 I[0-#<R>]
Shutter Button Parts
Now, given the fragility of that setup, you don’t cut it all at once. You start from a diameter of maybe 4 mm and go down by 0.2 mm until you hit 3.0, then make a final pass at 2.9 mm. EMC2’s AXIS MDI mode makes this easy enough: type in the commands for a pass at 4.0 mm, then click on the previous command, change 4.0 to 3.8, and then just clickety-click.
Spindle far too slow at 3000 RPM, feed at 150 mm/min seemed fine. Sissy cuts worked out OK.
After the first few passes, my dim consciousness became aware of the fact that this is how I should have turned down the screw head…
Button Assembly – Top
I cleaned up the bezel by putting it in an ultrasonic cleaner to shake the crud off, put it on a warm firewall router overnight to dry it out, then slobbered some Plastruct solvent adhesive into the cracks and clamped it for another night. The bezel was slightly out-of-round from the damage, so I hand-trimmed the bent plastic using a “high speed cutter” (#193, basically an end mill) in a Dremel flexible shaft at about 1/3 max speed until the shutter button bottomed out smoothly within the inner recess. Not a bit of CNC to be seen: hand held all the way.
Button Assembly – Bottom
Then loosen the nut a bit, poke the screw through the bezel, put the spring on, and screw the shutter button in place. Adjust the nut so the screw head is 1.4 – 1.5 mm from the bottom of the bezel with the nut resting in the recess.
Button Assembly – Pressed
Twiddle the shutter button until the screw head protrudes 2.4 mm from the bezel with the button pressed down.
That’s measured with the hole-depth tang of a caliper, sitting atop the screw head. I don’t believe there’s 0.1 mm accuracy in the measurements, but they’re close enough. I did file off a few mold flash bumps from the shutter button & bezel during this adventure.
Mark the screw threads above the button, unscrew it, chop the screw off with a stout diagonal cutter (it’s brass and not very thick, it’s OK), file the end flat, clean up the threads.
The trick seems to be that the button must rest just below the inner ring of the bezel, so that it bottoms out smoothly when pressed. If it’s above the ring, then one side will hang up. The ring depth thus seems to limit the maximum travel, although I can’t say whether this is the way it’s supposed to work or not.
I iterated & filed until the screw was flush with the top of the button with it screwed down to the proper position. It helped to figure out that one turn of the shutter button on the screw changed the “pressed” protrusion by 1/72″ = 0.35 mm.
Urge some low-strength Loctite under the nut and into the shutter button’s hole, reassemble everything, and you’re done.
Urethane Adhesive on Body Socket
The fall bent the bezel tabs so they no longer latch firmly in the camera body. I put two dabs of urethane adhesive on the socket in the body. The adhesive expands (foams!) as it cures; I hope it will lock the bezel in place while still allowing it to be removed if needed.
I dabbed off most of the adhesive you see in the picture before installing the bezel; it’s not as awful as it looks!
The final result has slightly less travel than the (undamaged, original) shutter button in my DSC-H5, but it works perfectly: half-press to focus, full press to trigger the shutter.
Having figured out what to do, I started with the button, which is chromed plastic, nothing too fancy, and not at all hard to machine.
Laser Aligning to the Button Stem
A small post turned from an acrylic rod (the gray cylinder) supports the button in the Sherline 3-jaw chuck attached to the mill table; that was the only way to keep it reasonably level. Laser alignment got eyeballometrically close to the middle; it looks a bit off to the right, but the end result was OK.
Removing the Broken Stem
A 2 mm end-cutting bit chewed off the stem in short order; I set the jog speed to about 100 mm/min and just jogged down until the cutter was flush with the button. Spindle at 4000 rpm, for lack of anything smarter.
I decided to go with a 1-72 brass machine screw, which is slightly larger (1.75 mm) than the original 1.5 mm button stem. That means I must drill out the bezel hole, as well, but the 1.5 mm diameter of the next-smaller 0-80 screws in my assortment was a sloppy fit.
A touch of manual CNC for the drilling, #53 with the spindle at 3000 rpm, Z touched off at the button’s surface:
G81 Z-4 R3 F150
The spindle was slow enough and the feed fast enough to keep from melting the button without applying any coolant.
I tapped the hole 1-72 by simply screwing the tap in with my fingers…
Chuck-in-chuck For Head Shaping
The 3-jaw lathe chuck doesn’t grip a 1-72 screw (no surprise there), so I grabbed the screw in the Sherline’s smallest drill chuck and poked that in the lathe. This doesn’t make for great concentricity, but it was close enough. The right way, as my buddy Eks reminds me, is to slit a nested bunch of brass tubing and use them as collets, but … next time, fer shure.
Button With Reshaped Screw Head
Anyhow, here’s what the button & screw look like so far. The backside of the screw head looks like it needs some cleanup; there’s nothing like taking a picture to reveal that sort of thing.
The pencil lead is 0.5 mm and the grid in the background has 1 mm squares, just to give you an idea of the scale.
My brother-in-law Tee dropped his Sony DSC-H1 camera, which landed atop its shutter button on the pavement.
Bad news…
the shutter button broke off
the bezel popped out
the teeny little snap ring that held the shutter button stem in the bezel vanished, because…
the stem broke and the end vanished, too
Good news…
apart from some scuffs, the camera still works
he managed to find the shutter button
and the button bezel
and the spring!
Shutter Button – Spring – Bezel
A bit of browsing reveals that many, many Sony DSC-Hx (where x is an integer from 1 through 9, inclusive) owners have the same problem, minus the inconvenience & embarrassment of first dropping the camera. Turns out that the shutter button stem breaks at that notch in normal use.
It seems the stem snaps while you’re taking pix, whereupon the spring launches itself and the button cap into the nearest river / drain grate / weedy area, never to be seen again. Tee is exceedingly fortunate to have found all the major pieces!
Shutter Button Stem – End View.
Here’s the broken end of the stem, with the button cap out of focus in the background. The stem is 1.5 mm in diameter, so the snap ring was surrounding, what, 0.75 mm of plastic? In what alternate universe did this design decision make sense?
I think the snap ring contributed to the problem by eroding the stem in the notch; that little white stub isn’t half of the stem diameter; it may have stretched under impact, but surely not all that much.
Yes, you can buy a replacement button for about 30 bucks direct from Sony, but it seems the new stem is subject to the same failure after a short while. They’re standing by the original design, marginal though it may be.
Now, obviously, this stem failed from abuse, no argument there. Everybody else had their stem fail without provocation, though, so it really isn’t adequate to the task at hand.
Bezel Socket View
Anyhow, there’s also some damage at the bezel socket on the camera body, but nothing major. The dented silver areas on either side of the switch membrane are ESD shields, so that any static discharge from your finger will (most likely) dissipate on the external frame of the camera, rather than burrow into its guts via the switch.
The bezel twist-locks into the camera body, which means that you can remove the bezel if you can get a good grip on it. It turns clockwise to remove.
Shutter Switch Closeup
Peering closer at the membrane switch, it looks as though the button stem did some damage on its way out, although Tee admits to using various pointy objects to trigger the shutter while figuring out what to do with the camera.
More good news: the switch still works correctly, including the focus function with the button half-pressed, That means the switch membrane and contacts are in good shape.
Bezel – Top View
The bezel itself is pretty well graunched, with a nest of cracks underneath that damaged arc to the left of the pictures. I think it’s in good enough condition that I can remove the bent plastic, ooze some solvent adhesive into the damage, and compress it enough to make everything stick together.
Bezel – Side View
Obviously, this calls for some Quality Shop Time!
The overall plan is to remove the remaining stem from the button, drill-and-tap the button head for a miniature brass screw (1-72, I think), reshape the screw head into a membrane-friendly plunger (about 3 mm diameter and flat), then put it all back together with a nut in place of the snap ring.
I should be able to install the bezel (without the button), then insert some drill rod through the hole to figure out how far the screw must protrude to trigger the focus & shutter switches. Perhaps a pin vise will grip the drill rod and bottom out on the bezel’s central ring, so I can do a trial-and-error fitting?
Then I can adjust the screw to that overall length below the bezel with the button pressed, whack off anything that sticks out above the button, adjust the nut to limit the button’s outward travel, slobber Loctite over everything, and put it all together for the last time.
That’s the plan, anyway. As the Yiddish proverb has it, “If you wish to hear G*d laugh, tell him your plans.”
There I was, bandsawing a 24″-diameter circle from 3/8″ plywood when the saw stopped cutting… which is how the bandsaw tells me that the blade joint just came undone. That’s what I get for applying too much torque to the blade, I thought…
As you can see, the joint I described at great length there wasn’t nearly as good as I thought. It has a nice wetted spot in the middle, but the rest of the joint didn’t bond. Alas, the ends of the blade sections had just enough molten solder to look as though they were bonded.
I’ve done other joints with that resistance soldering unit which held up well, but I’ll cheerfully admit I don’t have years of deep experience with it. Given the effort involved in making a bandsaw blade joint (not to mention the fact that I only solder up a new blade when I really need one), this is the first destructive test I’ve seen. It’s not like I’m going to solder up a blade, then tear it apart just to see how it worked, as I did with the nickel strip on those AA cells there.
A change of technique seems in order. The carbon electrode produces enough heat directly under it (which isn’t surprising, that’s how resistance soldering works), so I must cover the full joint area with enough oomph to get a good bond everywhere. That seems to be 1.5 seconds per zap, more or less, repeated as needed.
I have some machinable graphite that I could cut to be one square bandsaw joint at the end, plus a stub from a searchlight electrode that might work with less overall effort. However, a larger electrode probably wouldn’t heat the joint enough to melt the solder everywhere at once.
For what it’s worth, I tried to re-solder the joint without doing full surface preparation by grinding down to bare steel. Didn’t work, natch, which should come as no surprise; wasted half an hour futzing around before I gave up and did it right.
Memo to Self: Use the carbon gouging rod electrode, hit the entire joint, and don’t move until each zap cools!
Much as I expected, there’s just not enough energy in a 5 V / 200 A resistance soldering unit to weld 8-mil nickel strips to AA cells. But the gadgetry needed to contact the cells works fine for resistance soldering.
I took a pair of sacrificial cells, grabbed the positive terminal of the blue one in the pliers, applied a flattened snippet of good old rosin-core tin-lead solder (see below), laid the strip atop it, and held things together with pressure from the tungsten electrode.
About 800 ms of current did the trick; the electrode heated to middling orange by the time the current shut off, which indicates it was the highest-resistance part of the circuit. Eyeballing an ammeter clamped around a secondary lead says the peak current was 250 A, a bit over the nominal 200 A, but close enough.
The obvious dent in the strip over the positive terminal shows that the center of the solder strip melted first; I could feel the tungsten electrode sinking into the strip as it heated.
For the negative terminal, I grabbed both cells in a small vise (resting on insulation below the bottom terminals!), tucked another solder strip under the nickel tab, pressed one jaw of the pliers against the cell, and hit the tab with the tungsten electrode. Lovely fillet, isn’t it?
Destructive Joint Examination
The joints look good inside, too. I cut the strip, then peeled the joints apart: they’re both fully wetted. You can see some tiny bubbles from the rosin, but I doubt that’s a problem.
Now, you don’t want to solder to AA cells by hand with a soldering iron, because it’s entirely too easy to cook the piss out of the plastic insulators, pressure relief valves, and other internal gadgetry. Yeah, I’ve done that too, and it works most of the time, but it’s not recommended.
A controlled pulse is all over and done with before the rest of the metal case has time to get more than warm. In fact, by the time I put down the electrodes, the nickel strip was cool enough to touch! The copper jaws act as a heat sink for the positive button and the negative terminal is the entire can around the cell, so I think this will be OK.
I’ll do a bit of testing on some sacrificial cells to figure out the minimum time required for a good joint; I think 600 ms will do. I might use a carbon electrode for the positive terminal to get a somewhat larger contact over the whole button and eliminate that unsightly dent.
Solder prep: I flattened about 3 mm of ordinary solder wire by whacking it with a polished brass hammer on a chunk of PCB stock. Flat solder works better than round solder for resistance soldering, as everything stacks up neatly with lots of contact area. The pix there should give you the general idea.
I’m mildly unhappy with the pliers, which must open a bit too far for my paws. A fixture that fits in the bench vise might be in order…
I’m trying to find out if I can use my hulking resistance soldering setup to weld nickel strips on AA cells, with the intent of making some decent 8-cell packs that don’t have crappy stainless-steel springs. Having slit the copper sheet for the jaws, I just now kludged together some electrodes…
The positive terminal on an AA cell is almost exactly 3/16 inch in diameter, call it 0.188 inches. That’s the hole in the middle of the copper sheet, which is neatly split so it clamps the terminal button from all sides with nearly equal griptitude.
The pliers are snap-ring pliers, with the original weird metric screws (neither 3 nor 4 mm, which is all I have) replaced with stainless steel 8-32 screws. Drill-and-tap the pliers jaws, clearance drill the not-quite-rectangular clamping plates, bend the jaws so the copper sheet aligns properly. It’s all good.
I plan to add a jumper connecting the two copper sheets; obviously, you don’t get good current transfer without a solid connection. The darker gold-copper color in the center section is Kapton tape insulating the top of the jaw sheets.
The cable goes off to one terminal of the resistance soldering transformer, which is a rewound kilowatt-class microwave oven transformer. The basics are 5 V RMS at about 200 A, with a foot switch into a microcontroller that drives a triac on the transformer primary. I can set the timing in multiples of 100 ms (6 AC line cycles) and the duty cycle from 1 to 6 of the cycles in each 100 ms. More on that later; the triac triggering is nightmarishly complex because I was doing a Circuit Cellar column and wanted to show how a triac gets all confused driving an inductive load. It really needn’t be that fancy in real life.
Anyhow, 200 A is at least an order of magnitude less than the current from a capacitive-discharge welding setup, but I’m hoping that with some tweaking I can get enough heat to make it all work out. If not, it’ll still be a king-hell resistance soldering setup.
AA Cell Center Contact Electrode
The center electrode started life as an oil-burner ignition electrode. It’s a steel shaft joined to a (most likely) tungsten probe within the ceramic insulating tube. The cable goes off to the other transformer terminal.
Center Electrode – Side Detail
Tungsten is a fairly crappy conductor, so I forged a copper clamp around the end of the electrode. It started as a section of the same copper pipe that went into the pliers, hammered around the wire. That took many annealing cycles, which basically consists of heating the copper red-hot with a propane torch and letting it cool for a bit.
The two smaller screws apply clamping pressure to the copper around the electrode, which ought to improve the contact area. I plan to anneal the clamping area one more time, scrubulate the inside of the clamp, then screw everything together nice & tight with maybe a bit of anti-oxidation compound in there for good measure.
Center Electrode – Front Detail
The general idea is to apply the current as close to the AA cell’s terminal as I can. I think I must file / grind down the end of the probe so that it’s applying the juice exactly to the center of the nickel strip at the middle of the terminal.
The first test was 500 ms at 100% duty cycle, which produced a nice spatter of sparks from underneath the strip, the tungsten glowed orange, but the 8 mil nickel strip didn’t weld itself to the cell top. No weld nugget. Bupkis.