The Smell of Molten Projects in the Morning

Ed Nisley's Blog: Shop notes, electronics, firmware, machinery, 3D printing, laser cuttery, and curiosities. Contents: 100% human thinking, 0% AI slop.

Category: Electronics Workbench

Electrical & Electronic gadgets

  • Auto Side Marker Bulb: FAIL

    Auto Side Marker Bulb: FAIL

    Six years ago I replaced the W5W incandescent front side marker bulbs in our 2015 Subaru Forester with amber LED bulbs:

    Side Marker bulbs - failed adhesive
    Side Marker bulbs – failed adhesive

    The adhesive holding the LED PCB to the aluminum “heatsink” has fossilized and the strip on the right is peeling off (with the left one not far behind), which likely accounted for its loss of light output and flickering.

    Tearing it apart reveals the LED layout and what looks like a bridge rectifier or a big resistor (to fool the CAN bus?) on a tiny PCB jammed inside the shell:

    Side Marker bulbs - rectifier
    Side Marker bulbs – rectifier

    The other side of the PCB could be a buck converter:

    Side Marker bulbs - buck converter
    Side Marker bulbs – buck converter

    In round numbers, we’ve driven 18000 miles at an average of maybe 40 mph over those years; call it 450 hours. However, the side marker lights aren’t on unless the headlights are on; we do very little night driving, which means those LED bulbs are the usual crap.

    I replaced both front bulbs with a different design sporting two LED chips and we’ll see how long those last.

  • Anker LC-40 Flashlight Switch Repair

    Anker LC-40 Flashlight Switch Repair

    The switch on the Anker LC-40 flashlight serving as a running light on my Tour Easy became slightly intermittent before I replaced it with a 1 W amber LED, but it was still good enough to become the troubleshooting flashlight in the tray next to the Prusa Mk 4 printer. Eventually, of course, it failed completely and Something Had To Be Done.

    Although I knew an exact replacement switch had to be available from the usual sources, I could not come up with a set of keywords capable of pulling them out of the chaff.

    That was not a problem, because the assortment of SMD switches I used to replace the handlebar control caps on Mary’s Handi-Quilter HQ Sixteen contained push-on / push-off switches that were almost the right size:

    Anker LC-40 Flashlight - switches and caps
    Anker LC-40 Flashlight – switches and caps

    Having recently convinced the MakerGear M2 3D printer to use TPU filament, all I had to do was produce a suitable cap to fit over the new switch in the flashlight’s tail:

    Anker LC-40 Flashlight Button - TPU PrusaSlicer
    Anker LC-40 Flashlight Button – TPU PrusaSlicer

    Which turned into a multi-dimensional search over cap geometry, TPU extrusion speeds & feeds, and various impossible-to-directly-measure sizes:

    Anker LC-40 Flashlight - TPU cap iterations
    Anker LC-40 Flashlight – TPU cap iterations

    The squarish block over on the left is PrusaSlicer’s version of a support structure wrapped around the first cap version; if human lives depended on it, I could surely extract the cap, but it would take a while.

    The remaining debris samples occured while discovering:

    • An extruder temperature of 230 °C, not 250 °C, works well
    • A conical shape of the lip around the open end to eliminate the support structure
    • TPU doesn’t bridge well, so the closed end must be down
    • Length of the central pillar to barely touch the switch stem when released
    • Cap length and wall thickness so the TPU shell can collapse enough to actuate and release the switch stem
    • And so on and so on and scooby dooby dooby

    Eventually I came up with a suitable combination:

    Anker LC-40 Flashlight - switch caps
    Anker LC-40 Flashlight – switch caps

    Because I expected this would be an easy job, I used snap ring pliers to unscrew and rescrew the threaded retaining ring holding the switch PCB in place. Because the pliers didn’t have a stable grip on the ring, the threads eventually became just a bit goobered.

    This was not a problem, because I have a(nother) 3D printer:

    Anker LC-40 Flashlight Retainer - show view
    Anker LC-40 Flashlight Retainer – show view

    The gray thing on the right is a simple pin wrench fitting both the original and the replacement retaining rings, so I can orient the rings properly while unscrewing & rescrewing:

    Anker LC-40 Flashlight - pin wrench in place
    Anker LC-40 Flashlight – pin wrench in place

    The threads have a 0.75 mm pitch and, while it’s possible to print screw threads, even a tedious 0.1 mm layer height would define each turn of the thread with only 7-½ layers.

    This was not a problem, because I have a mini-lathe:

    Anker LC-40 Flashlight - thread cutting
    Anker LC-40 Flashlight – thread cutting

    The yellow & green things on the left of those solid models are the fixture holding a retaining ring for threading and the washer applying pressure to keep the ring in place:

    Anker LC-40 Flashlight - lathe fixture - detail
    Anker LC-40 Flashlight – lathe fixture – detail

    The alert reader will note that washer lacks holes for the alignment pins I added after seeing the washer sit not quite concentric on the fixture. I could call it continuous product improvement, although I doubt I’ll print another one.

    Setting up the lathe involved finding the proper set of change gears, including the vital 42-50 stacked gear I made a while ago to print metric threads on a hard-inch lathe:

    Anker LC-40 Flashlight - lathe change gear train
    Anker LC-40 Flashlight – lathe change gear train

    Although you’re supposed to measure the thread spacing on a skim pass, I find it’s easier to just measure the carriage movement for one spindle rotation:

    Anker LC-40 Flashlight - lathe gear check
    Anker LC-40 Flashlight – lathe gear check

    A few passes produced a fine retaining ring:

    Anker LC-40 Flashlight - pin wrench - detail
    Anker LC-40 Flashlight – OEM vs lathe-cut threads

    Sporting much nicer looking threads than the goobered original:

    Anker LC-40 Flashlight - OEM vs lathe-cut threads
    Anker LC-40 Flashlight – OEM vs lathe-cut threads

    The original switch had a stabilizing ring around the body to prevent it from wobbling under the original rubber cap.

    This was not a problem, because I have a laser cutter:

    Anker LC-40 Flashlight - new switch in stabilizer
    Anker LC-40 Flashlight – new switch in stabilizer

    Those came from a scrap of fluorescent acrylic.

    The wave washer behind the acrylic stabilizer improves the contact between the PCB trace around the rim and the flashlight tailcap, with the current passing through the body to the “light engine” up front. The retaining ring provides enough pressure to compress the wave washer, which is why it’s so easily goobered without a close-fitting pin wrench.

    With everything assembled in reverse order, the flashlight worked pretty much as it did back when it was new:

    Anker LC-40 Flashlight - TPU cap installed
    Anker LC-40 Flashlight – TPU cap installed

    However, after describing this during a recent SquidWrench meeting, I discovered that adding “latching” to my keywords surfaced a bodacious assortment of flashlight switches, so (a few days later) I removed the not-quite-right switch and replaced it with an identical twin of the OEM switch requiring just a little lead forming to fit the PCB.

    Even better, using the 3D printed pin wrench to screw the original retaining ring into the flashlight’s aluminum threads a few times re-formed (unrelated to recent electrolytic capacitor reforming) its goobered threads well enough to fit and work perfectly again.

    So I have:

    • … reassembled the flashlight with more-or-less original components
    • … a repair tool kit ready when another LC-40 fails
    • … re-learned the lesson that any time spent making a fixture or a special tool is not deducted from one’s allotment

    And I loves me a happy ending or two!

    The OpenSCAD source code as a GitHub Gist:

    // Anker LC-40 flashlight switch retainer
    // Ed Nisley – KE4ZNU
    // 2025-05-05
    include <BOSL2/std.scad>
    Layout = "Show"; // [Show,Build,Retainer,Fixture,Washer,Wrench]
    Gap = 5; // [0:10]
    /* [Hidden] */
    HoleWindage = 0.2;
    Protrusion = 0.1;
    NumSides = 3*3*4;
    ID = 0;
    OD = 1;
    LENGTH = 2;
    $fn=3*3*4;
    Plate = [16.8,20.0,3.0]; // retainer plate, OD allows for lathe threading
    PlateRecessDepth = 1.6;
    PlateInnerThick = Plate[LENGTH] – PlateRecessDepth;
    ClearID = 11.0;
    PinOD = 3.0;
    PinOC = 12.0;
    WrenchLength = 25.0; // handle on wrench
    JawLength = 22.0; // lathe jaw
    ThreaderOverrun = 10.0; // stick-out for threading tool clearance
    ThreadAllowance = 2*1.0; // clearance for thread depth
    //———-
    // Define Shapes
    module Retainer() {
    difference() {
    tube(Plate[LENGTH],od=Plate[OD],id=ClearID,anchor=BOTTOM);
    up(Plate[LENGTH] + Protrusion)
    cyl(PlateRecessDepth + Protrusion,d=Plate[ID],anchor=TOP);
    down(Protrusion)
    hull()
    for (i = [-1,1])
    right(i*PinOC/2) down(Protrusion)
    cyl(Plate[LENGTH] + Protrusion,d=PinOD,anchor=BOTTOM);
    }
    }
    module Fixture() {
    difference() {
    regular_prism(6,h=JawLength,d=1.2*Plate[OD],anchor=BOTTOM) position(TOP) {
    cyl(PlateRecessDepth + ThreaderOverrun,d=Plate[ID],anchor=BOTTOM);
    cyl(Plate[LENGTH] + ThreaderOverrun,d=ClearID,anchor=BOTTOM);
    // hull()
    for (i = [-1,1])
    right(i*PinOC/2)
    cyl(Plate[LENGTH] + ThreaderOverrun + Plate[LENGTH]/2,d=PinOD,anchor=BOTTOM);
    cyl(ThreaderOverrun,d=Plate[OD] – ThreadAllowance,anchor=BOTTOM);
    }
    up(JawLength + ThreaderOverrun + Plate[LENGTH] + Protrusion) // M4 burly insert
    cyl(10.0 + 5,d=5.5,anchor=TOP);
    }
    }
    module Washer() {
    difference() {
    tube(Plate[LENGTH],od=Plate[OD] – ThreadAllowance,id=4.5,anchor=BOTTOM);
    down(Protrusion)
    for (i = [-1,1])
    right(i*PinOC/2)
    cyl(2*Plate[LENGTH],d=PinOD,anchor=BOTTOM);
    }
    }
    module Wrench() {
    difference() {
    union() {
    cyl(WrenchLength,d=Plate[ID],anchor=BOTTOM);
    for (i = [-1,1])
    right(i*PinOC/2)
    cyl(WrenchLength + Plate[LENGTH],d=PinOD,anchor=BOTTOM);
    }
    down(Protrusion)
    cyl(2*WrenchLength,d=ClearID – 2.0,anchor=BOTTOM);
    }
    }
    //———-
    // Build things
    if (Layout == "Retainer")
    Retainer();
    if (Layout == "Fixture")
    Fixture();
    if (Layout == "Washer")
    Washer();
    if (Layout == "Wrench")
    Wrench();
    if (Layout == "Show") {
    color("Gold")
    Fixture();
    up(JawLength + ThreaderOverrun + Gap)
    zflip(z=Plate[LENGTH]/2)
    Retainer();
    color("Green")
    up(JawLength + ThreaderOverrun + Plate[LENGTH] + 2*Gap)
    Washer();
    right(40) {
    zflip(z=Plate[LENGTH]/2)
    Retainer();
    color("Silver")
    up(Plate[LENGTH] + Gap)
    zflip(z=WrenchLength/2)
    Wrench();
    }
    }
    if (Layout == "Build") {
    Fixture();
    right(1.5*Plate[OD]) {
    Retainer();
    fwd(1.5*Plate[OD])
    Retainer();
    }
    left(1.5*Plate[OD])
    Washer();
    fwd(1.5*Plate[OD])
    Wrench();
    }

  • S-100 Bus Computer: Capacitor Reforming

    S-100 Bus Computer: Capacitor Reforming

    I volunteered to reform the hulking electrolytic capacitors in a long-unused S-100 Bus computer:

    S-100 Bus Cap Reforming - Codex 7200 Modem case
    S-100 Bus Cap Reforming – Codex 7200 Modem case

    Yes, it’s built into a recycled modem case. No, they don’t make modems like they used to, either. Regrettably, the five status indicators on the left were not set up as Der Blinkenlichten.

    The inside view:

    S-100 Bus Cap Reforming - inside view
    S-100 Bus Cap Reforming – inside view

    The multi-winding transformer in the back feeds bridge rectifiers (out of sight behind the caps) producing bulk DC:

    S-100 Bus Cap Reforming - bulk supply caps
    S-100 Bus Cap Reforming – bulk supply caps

    The gray cap is 52 mF = 52000 µF 15 V for the +5 V regulators supplying the TTL logic on each board.

    Two of the three blue caps (each 9 mF = 9000 µF 50 V) are for the +12 V and -12 V supplies. I think the third cap is a separate supply for a different purpose, but I did not trace out the wiring.

    The on-board regulators seem to use solid electrolyte caps that should still be in fine shape you should replace on principle, per ericlscott’s experience. You’d want to bring up each board separately while probing the voltages; the box of stuff accompanying the system has an extender card that should make probing easier.

    I hoped to boot the thing after restoring the caps, but a casual inspection showed wire corrosion:

    S-100 Bus backplane - jumper wire corrosion
    S-100 Bus backplane – jumper wire corrosion

    You’d want to pull the backplane out and replace those jumpers, as well as clean the bus contacts, before applying power.

    The system has two 8 inch floppy drives in a separate case with its own power supply:

    S-100 Bus floppy drives - overview
    S-100 Bus floppy drives – overview

    There was some corrosion in there, too:

    S-100 Bus Floppy Drive - optical sensor corrosion
    S-100 Bus Floppy Drive – optical sensor corrosion

    So I confined myself to reforming the caps and must let someone with more powerful motivation restore the rest of the system before trying to connect everything and booting CP/M.

    The general idea behind “reforming” an electrolytic capacitor is to regrow the oxide layer separating the anode and cathode electrodes, which involves passing a current of about 1 mA for as long as it takes to bring the terminal voltage up to the cap’s maximum rated voltage:

    S-100 Bus Cap Reforming - 52mF 15V
    S-100 Bus Cap Reforming – 52mF 15V

    That setup consists of an absurd number of PowerPole adapters putting the meter in series with a fuseholder repurposed to hold resistors to limit the current, with leads eventually ending up on the capacitor:

    S-100 Bus Cap Reforming - 52 mF 15 V cap connection
    S-100 Bus Cap Reforming – 52 mF 15 V cap connection

    The red dot is the overpressure vent, not a polarity marker.

    Apparently the Greek mu symbol wasn’t in the font available for the labels, as all the capacitors use m in its place: that capacitor is 52 mF = 52000 µF.

    The white plastic ejection handle belongs on the right end of the CPU board seen in the second picture, which was not plugged into its slot when I opened the case. I snapped the handle in place and plugged the board in just to keep it out of trouble. The case does not have board guide slots along the edges that would let the handle eject the board, but all that was definitely in the nature of fine tuning back then.

    I started with +15 V through a 16.9 kΩ resistor and swapped in 3.3 kΩ, 1 kΩ, and 220 Ω resistors as the cap voltage crept upward over the course of two days and eventually settled to a steady state:

    S-100 Bus Cap Reforming - 52mF 15V final voltage
    S-100 Bus Cap Reforming – 52mF 15V final voltage

    After discharging, the cap measured 59.5 mF with a 0.3 Ω ESR, which definitely seemed Good Enough.

    I reformed the three 9 mF 50 V caps at the same time by applying 50 V to three resistors captured on their screw terminals, changing the resistors as the voltages rose:

    S-100 Bus Cap Reforming - 50 V caps
    S-100 Bus Cap Reforming – 50 V caps

    Those three caps eventually measured (clockwise from upper right):

    • 9.66 mF, 1.0 Ω ESR
    • 9.76 mF, 2.6 Ω ESR
    • 10.46 mF, 3.4 Ω ESR

    The ESRs suggest they’re somewhat dried out, but I’d be tempted to run them anyway, because the on-board regulators should knock down the ripple.

    All of the reformed caps had leakage currents of a few hundred microamps. They’re not new capacitors and never will be, but they may be Good Enough.

    Getting the caps out of the diskette drive power supply required easing the entire supply frame / heatsink out of the case before unscrewing the capacitor clamps:

    S-100 Bus Cap Reforming - 16 mF 50V
    S-100 Bus Cap Reforming – 16 mF 50V

    That one eventually measured 22.1 mF with 0.14 Ω ESR. Its sibling, nominally 38 mF at 15 V, came in at 48.9 mF with 0.95 Ω ESR.

    The power supply PCB carries a handful of smaller aluminum electrolytic caps that are impossible to remove without unsoldering all the TO-3 transistor leads coming through the aluminum heatsink / frame, then completely dismantling the power supply:

    S-100 Bus floppy drives - power supply PCB
    S-100 Bus floppy drives – power supply PCB

    Although I reformed the big caps, I think a better plan would be to replace the whole thing with a contemporary switching supply. AFAICT it has 24 V and 5 V outputs; because we live in the future, dual-output switchers are cheap & readily available.

    And then I closed the cases to get them ready for the next part of their adventure …

  • 7 mm Tactile Switch Pinout

    7 mm Tactile Switch Pinout

    As is usually the case, the assortment of tiny switches arrived with no pinout documentation. The 6 mm square SMD switches were easy, but the 7 mm through-hole switches posed a puzzle.

    With the switch standing to make the return spring visible as shown, the pinout looks like this:

    7mm Tactile Switch pinout
    7mm Tactile Switch pinout

    TIL, somewhat to my surprise, both the latching and momentary 7 mm switches have DPDT contacts!

    Now I know how to wire the next thing …

  • HQ Sixteen: Improved Control Cap Wiring

    HQ Sixteen: Improved Control Cap Wiring

    The new control caps on the HQ Sixteen’s handlebars have three switches apiece:

    HQ Sixteen - grip cap installed - left
    HQ Sixteen – grip cap installed – left

    A six-conductor ribbon cable brings those switch terminal through the handlebars, across the smaller PCBs where the original switches plugged in, and atop the main PCB behind / under the LCD panel where they get wired together:

    HQ Sixteen - Control Button switch cable
    HQ Sixteen – Control Button switch cable

    The gray ribbon cable carries power for the LEDs and returns the original switch signals formerly plugged into one of the four-pin headers on the right PCB. The same PCB is used on the other side and the switches over there plug into the other header.

    The central PCB is also used for the rear handlebars, which do not have the smaller PCBs, and those switch cables plug directly into four-pin headers mounted instead of the headers for the gray ribbon cables:

    HQ Sixteen - Control Button central PCB
    HQ Sixteen – Control Button central PCB

    Some probing and doodling produced a diagram of the switch connections:

    HQ Sixteen - Control Button Wiring
    HQ Sixteen – Control Button Wiring

    Working with the handlebars either inverted or flipped left-for-right on the workbench makes this far more confusing than it really should be.

    In any event, the bottom diagram shows the connections between the two four-pad header positions on the central PCB and the two six-pin headers for the new switches. I used a 2×6 pin header block to plug in the new switches, connected the pins with soldered Wire-Wrap wire, and used three-wire ribbon cable to the PCB pads.

    The general idea was to duplicate the Start-Stop and Needle Up/Down switches on both sides, while maintaining the same relative positions of the Fast / Slow switches. In effect, the two new switches on each side are wired in parallel to the original switch pads on the PCB.

    Surprisingly, I got the three-wire ribbon cables from the four-pad headers right on the second try, which involved flipping it over. The top and bottom pads on those headers are connected together, so the three-wire cable can go on either way to reverse the positions of the other two wires.

    And then the new switches Just Worked™ … whew!

  • HQ Sixteen: Improved Control Cap Final Assembly

    HQ Sixteen: Improved Control Cap Final Assembly

    My version of the Handi-Quilter HQ Sixteen grip control caps requires some assembly:

    Control Button Caps - solid model - build view
    Control Button Caps – solid model – build view

    Getting the OEM caps off the handlebars required carefully applying torque through a strap wrench, but they eventually came free:

    HQ Sixteen - OEM grip cap - screw holes
    HQ Sixteen – OEM grip cap – screw holes

    I don’t know what the unused screw hole between the two gnarly holes was for; perhaps they discovered one hole was inadequate.

    The alert reader will note the two screw holes are not the same distance from the end of the tube, which required rebuilding the plug model to match:

    Control Button Caps - solid model - plug holes
    Control Button Caps – solid model – plug holes

    Which is why I didn’t glue the plug into the cap before I got the OEM caps off.

    Redrill the tube holes to 3 mm, file the burrs from both the OEM and my drilling, smooth the edges, and the plug fit perfectly. Then I seated the M3 square nuts behind those hole and, after installing the new plugs in the handlebars, glued the caps in place with a simple fixture to ensure the front faced forward:

    - HQ Sixteen - grip cap faceplate gluingHQ Sixteen - grip cap gluing
    – HQ Sixteen – grip cap faceplate gluingHQ Sixteen – grip cap gluing

    The clamp gently compresses the foam enough to hold the flats against the bench block while the JB Plastic Bonder cures.

    After verifying all the buttons worked, I glued the faceplates to the cap bodies:

    HQ Sixteen - grip cap faceplate gluing
    HQ Sixteen – grip cap faceplate gluing

    The tape held the faceplate in place while I snugged the clamps.

    Modulo my weak graphic design skills, the caps look pretty good:

    HQ Sixteen - grip cap installed - right
    HQ Sixteen – grip cap installed – right

    And, after a bit of wiring yet to be described, the buttons do exactly what their legends suggest:

    HQ Sixteen - grip cap installed - left
    HQ Sixteen – grip cap installed – left

    The white sheet with feeble graphics can be peeled off, so I have another chance to tart it up.

    The overall idea was to replace the failing Start/Stop switch while duplicating that switch on both caps. While I was at it, I also duplicated the Needle Up/Down button, because who wants asymmetric caps?

    Mary is assembling another quilt and the new switches will get plenty of action …

  • Power Outage

    Power Outage

    This housing development was the second in Poughkeepsie to have underground utilities and, to put it mildly, a lot has rotted out over the last 70 years.

    Over the weekend, one phase of the AC power flickered and eventually failed completely, with the other phase supplying a steady 120 VAC. Central Hudson (Gas & Electric) crews located long-lost buried boxes in places not matching their maps:

    Power Outage - flooded box
    Power Outage – flooded box

    Then they pumped / bailed enough water to repair / lengthen the wires:

    Power Outage - corroded wiring
    Power Outage – corroded wiring

    I’ve never before seen anybody work on live wires underwater.

    They installed above-ground boxes to simplify The Next Time.

    Some improvisation was required:

    Power Outage - improvised cocoa stirring
    Power Outage – improvised cocoa stirring

    Gotta say, cold Fireball Cocoa tastes different than hot Fireball Cocoa.