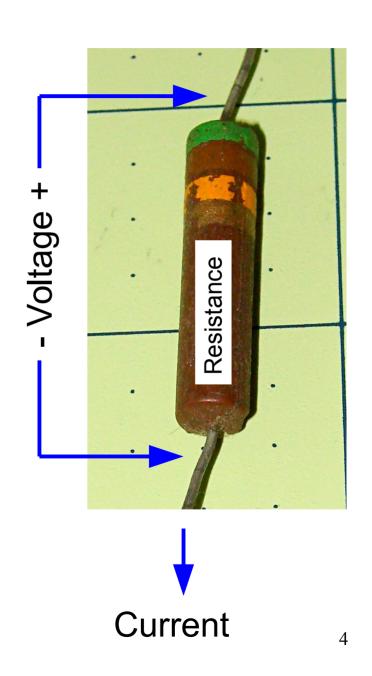


Helping Your Arduino Survive You

Ed Nisley • KE4ZNU ed.nisley@pobox.com softsolder.com

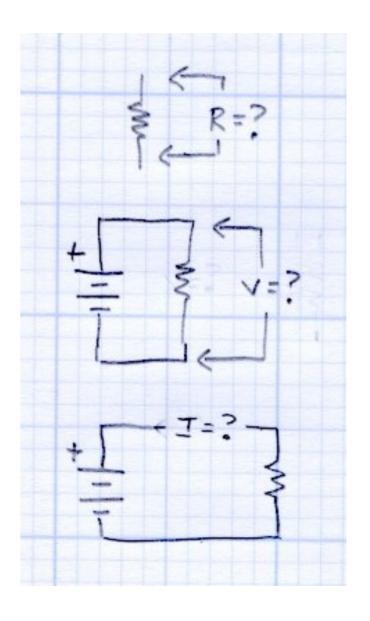
CNC Workshop
TechShop Detroit
June 2015

Bring This Stuff With You


- Laptop (with Arduino board + USB cable!)
 - Arduino IDE installed & tested
- Digital Multimeter
 - Volt Amp Ohm (optional: Freq Diode Cap Induct)
 - Two (or more!) meters = better
- Scientific Calculator (√ power log engineering)
- Power strip / short extension cord
- Useful, but not absolutely essential
 - Solderless breadboard / ProtoScrewShield
 - Soldering iron & suchlike

The Big Picture

- Arduino stuff
 - It's a PCB with known pin layout & spacing
 - Atmel Atmega168 / 328 µC + USB Interface
 - Power Source: USB or DC wall wart
 - Digital & analog I/O pins
- Your stuff
 - Draws power (ideally 5 V, maybe 12 V, or ...)
 - Connects to µC I/O pins (5 V only!)
 - Must play well with Arduino


The Fundamental Units

- E = voltage: volt V
 - Millivolt 1 mV = 0.001 V
- I = current: ampere A
 - Milliampere 1 mA = 0.001 A
- R = resistance: ohm Ω
 - Kilohm 1 k Ω = 1000 Ω

Lab: Measure Resistor Circuit

- Set meter to Ω = ohms
 - Measure resistance
- Set meter to V = volts
 - Measure voltage
- Set meter to A = amps
 - (Re-plug leads?)
 - Measure current
 - (Re-plug leads?)

One Rule To Bind Them All

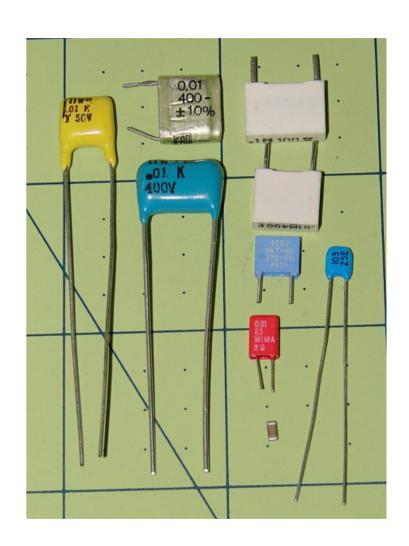
- Ohm's Law
 - → I = E / R (know R, measure E, get current!)
 - + E = I R
 - → R = E / I
- Most useful with resistors = known resistance
- You need a calculator and a multimeter ... now!

Lab: Verify Ohm's Law

- Using your measured values
 - Does measured voltage = (current x resistance)?
 - Does measured current = (voltage / resistance)?
 - Does measured resistance = (voltage / current)?
- How close did you come?
 - Percentage vs. absolute error
- What are the most accurate measurements?

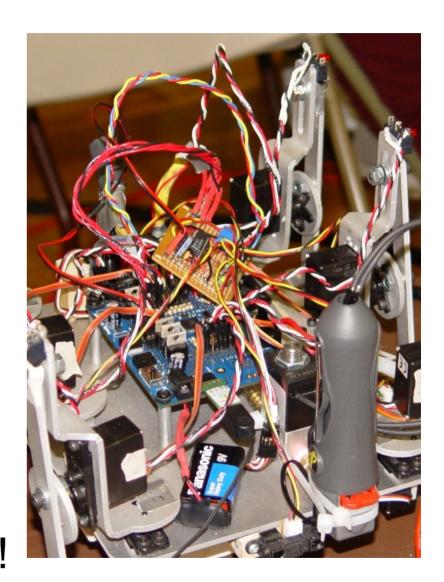
The Power Rule

Power dissipated in resistors

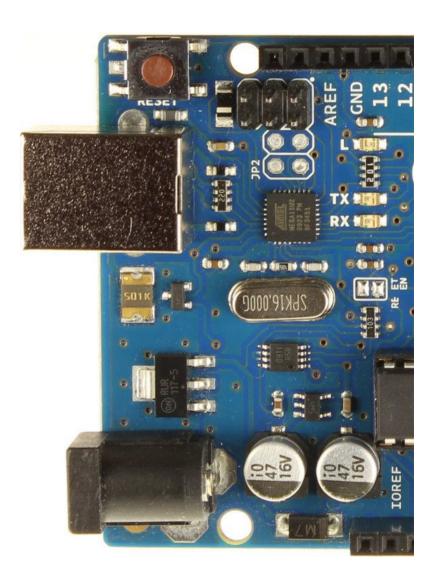

- $P = I^2 \cdot R$
- \rightarrow P = E²/R
 - You know R, so just measure E across resistor
- Power dissipated in anything
 - → P = E I
 - If there's an R in series, measure E to find I...
- ▶ P = power: W watt
 - Milliwatt 1 mW = 0.001 W

Lab: Calculate Power

- Using your measured values
- Calculate power dissipated in resistor
 - Power = voltage x current
 - Power = voltage² / resistance
 - Power = current² x resistance
- How close are those three values?
 - Percentage vs. absolute error


Capacitance

- C = capacitance: farad F
 - Millifarad
 - → 1 mF = 0.001 F = 10-3 F
 - Microfarad
 - \bullet 1 µF = 0.000 001 F = 10-6 F
 - Nanofarad
 - ↑ 1 nF = 0.000 000 001 F = 10-9 F
 - Picofarad
 - ◆ 1 pF = 0.000 000 000 001 F = 10⁻¹² F


Circuit Construction

- Use a solid breadboard
- If it can move, stop it...
- Good connections FTW!
 - Power
 - Ground
 - Signal
- Build it right the first time
 - Or do it over and over ...
- Current > 1 A = think hard!

Power Supply

- USB Supply ≠ 5.0 V
 - Measure actual voltage!
 - Draw < 200 mA from port
 - Max ≈ 500 mA, usually
- Wall Wart V_{EXT} ≤ 12 V
 - Loose wire? µC dies > 5 V!
 - Less heat @ V_{EXT} = 9 V
 - Keep regulator << 500 mW
 - ▶ Power P = $(V_{EXT} 5) * I$

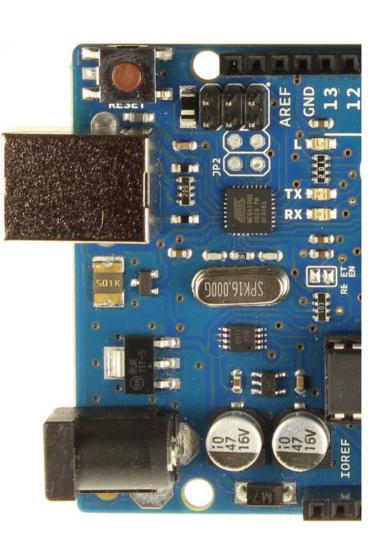
Ground (a.k.a. Common)

- Reference = 0 V
- Sum of all currents
- AC + DC Signals
- Difficult to get right
 - High current = trouble
- Vital for good signals
 - Glitches & intermittents
- Impossible to fix later
 - Daisy chain = death

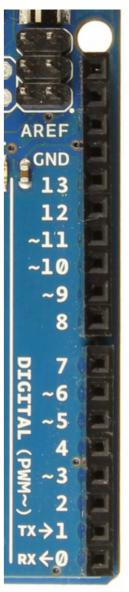
MOSFET R_{DS(on)} Tester PCB has four ground planes


Lab: Arduino Supply Voltages

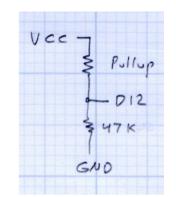
- Meter (-) terminal to GND pin
 - Measure Vin (from supply)
 - Measure 5V (= "5V")
 - Measure 3.3V (= "3.3V")
- If using external supply...
 - Measure V_{FXT} at source


Lab: Arduino Supply Current

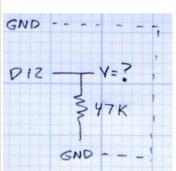
- Measure current from supply
 - USB needs inline tap
 - Wall wart can be cut & spliced
 - Cheap USB inline volt/ammeter


Lab: Calculate Arduino Power

- Total power
 - "Vin" x supply current
- Regulator power
 - → ("Vin" "5V") x supply current
 - ◆ Is it < 500 mW?</p>
- Board power
 - "5V" x supply current
- Compare all those powers

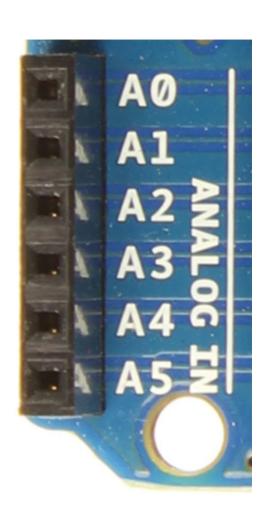

Digital Input Pins

- All pins are inputs before setup ()
 - pinMode(2,INPUT)
- Enable internal pullup resistors (always?)
 - pinMode(2,INPUT PULLUP)
 - digitalWrite(2,HIGH)
- Do not depend on pullup resistor value
 - Min 20 kΩ what everyone assumes it is
 - Max 50 kΩ what it might actually be
- digitalRead(2)

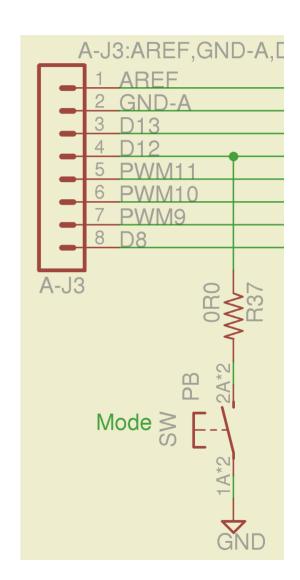


Lab: Measure Arduino Pullup

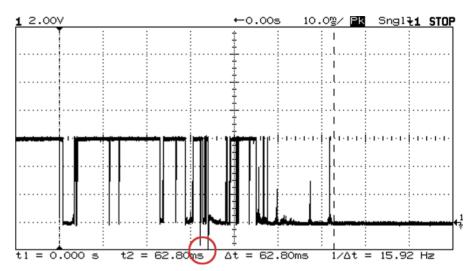
- Insert 47 kΩ resistor: D12 GND
- pinMode(12,INPUT_PULLUP)
 - Modify Blink example!
- Measure V across resistor
- Compute:
 - Current through resistor: I = E / R
 - Voltage across pullup: "5V" V
 - Pullup resistance
 - Know voltage & current: R = E / I
- Is pullup $\geq 20 \text{ k}\Omega$ and $\leq 50 \text{ k}\Omega$?

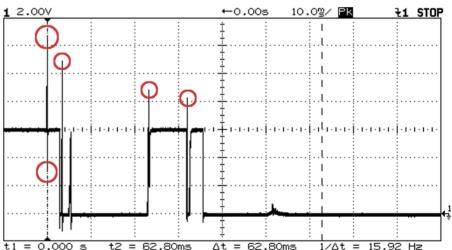

Digital Output Pins

- Configure pins for output in setup()
 - pinMode(2,OUTPUT)
- Outputs HIGH = 5 V or LOW = 0 V
 - Depends on load: measure!
- Current ≤ 40 mA / pin = absolute max
 - Happiness ↑↑ for current ≤ 20 mA
 - Enough for <u>one</u> standard LED...
- Maximum total μC current ≤ 200 mA
 - Draw much less than that: ≤ 100 mA max

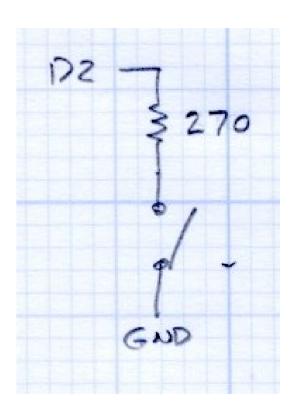

Additional Digital I/O Pins!

- Reconfigure Analog Input pins
 - pinMode(A0,INPUT_PULLUP)
 - pinMode(A0,OUTPUT)
- The usual digital functions
 - digitalWrite(A0,LOW)
 - digitalRead(A0)
- No analog output
 - analogWrite(A0, 128)


Switch Inputs

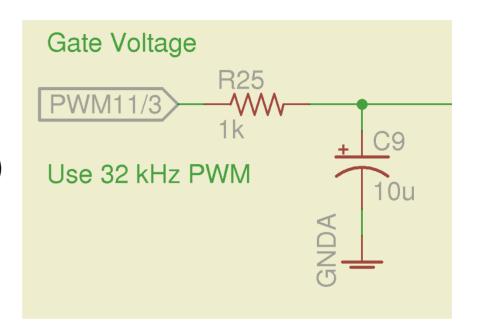

- Connect input pin to ground
 - This kills output pins = HIGH
 - Add 1 kΩ series R for protection?
- Enable internal pullup
 - pinMode(12,INPUT_PULLUP)
- Add external pullup ≈ 10 kΩ
- Pin states track voltages
 - Closed = pushed = LOW = false
 - Open = released = HIGH = true

Switch Contact Bounce

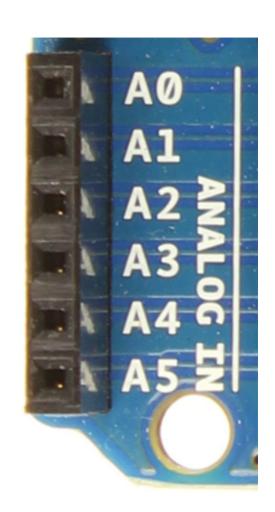

- Glitches galore!
 - Time scale = 10 ms/div
 - Unpredictable events
- Add parallel C = bad
 - Resonant with stray L
 - Voltage spikes!
- Use e.g. Bounce library
 - Don't roll your own
- Plan for the worst case

Lab: Measure Contact Bounce

- Use a grotty switch!
- pinMode(2,INPUT_PULLUP)
- Loop 1 second while testing D2
 - Hint: millis() + 1000
 - Hint: D2 != previous value?
 - Count each change
- Print/clear total every second
- Bonus
 - External Interrupt on D2 edge
 - Pin-change interrupt


"Analog" Output

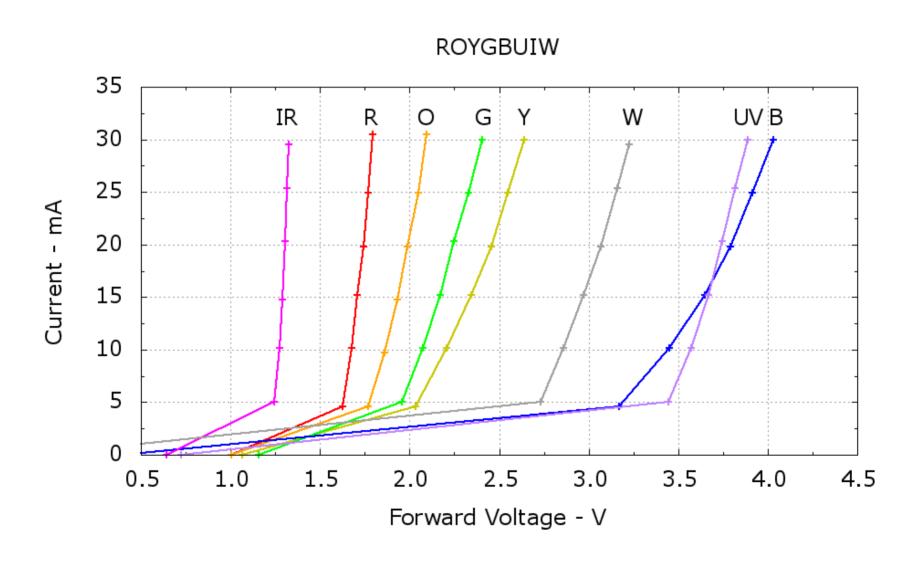
- It's not analog, it's digital ...
 - PWM = Pulse Width Modulation
 - Output pins 3, 5, 6, 9, 10, 11 only
- analogWrite(3,100)
 - Minimum = 0 → 0 V (steady, per load)
 - Maximum = 255 → 5 V (steady, per load)
 - 0 < "analog PWM" < 255 → pulses (*duh*)
- PWM frequency ≈ 488 & 976 Hz
 - Direct LED drive works fine


Real Analog Output

- Filter PWM → Analog
 - Simple RC filter OK
 - R•C >> 1/(2π•PWM freq)
 - C can become nasty big
 - ↑↑ PWM freq = ↓↓ C
- Analog buffer / op amp
 - Minimal load = good
 - Voltage scaling
- Wall wart = stable V (duh)

Analog Input

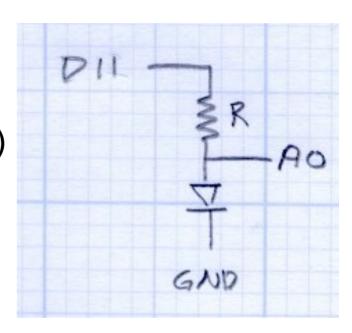
- analogRead(A0)
 - Minimum 0 = 0V
 - Maximum 1023 = "5V" (pretty close)
 - Depends on actual supply voltage!
 - Value = 1023 * (V / AREF)
- Wall wart = stable AREF = (duh)
- 0 V ≤ [Analog voltage] ≤ 5 V
- Avoid digital pin output before Al
- Average several Al readings?


Single LED

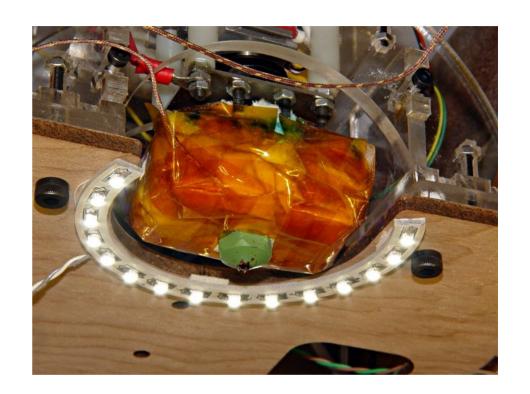
- Assume 20 mA max
 - Continuous, not peak
 - 10 mA = bright enough
 - Do you know different?
- Forward voltage drop
 - Red orange = 2 V
 - Yellow green = 2.5 V
 - Blue & white = 3.5 V
- Arduino = one LED / pin
 - ▶ Pin = 5 V & 20 mA maximum

https://en.wikipedia.org/wiki/LED_circuit

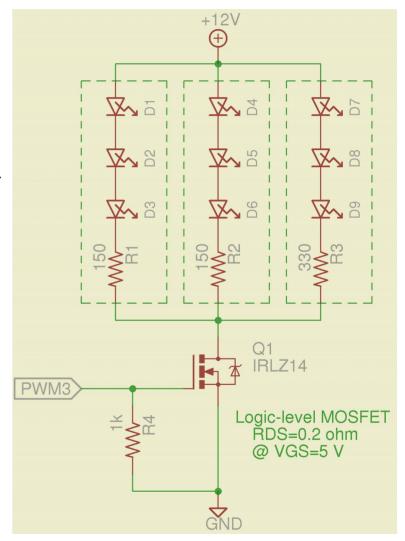
LED Forward Voltage vs. Color


Single LED Resistor

- Resistor limits LED current
 - This is not optional!
- Ohm's Law for resistor: R = V_R / I
 - Want current I = 10 mA (< 20 mA, OK?)</p>
 - Same as LED because they're in series
 - ▶ Voltage = $V_{CC} V_{LED} = "5V" 1.8 V = 3.2 V$
 - V_{LED} varies with color, so be careful!
 - Resistance = R = V / I = $3.2 / 0.01 = 320 \Omega$
 - Round up to next standard value = 330 Ω
- Measure actual V_R to verify: I = V_R / R


Lab: Measure LED Voltage

- LED
 - Pick a color
 - Use R = 270 Ω ? (compute current)
- Program
 - pinMode(11,OUTPUT)
 - digitalWrite(11,HIGH)
 - Print analogRead(A0)
 - Compute actual voltage
- Bonus
 - Compute LED current
 - Compute LED power


LED Strips & Rings

- 3 LEDs + R / section
 - I = 20 mA typical
 - → V = 12 V supply
 - Sections in parallel
- Cannot use µC pin (!)
 - MOSFET driver?
- RGB LEDs = 3 strings
 - Different resistors!
 - Measure V_R to find I

LED Strip Driver

- 3 LED sections = 60 mA
- Logic-level MOSFET
- Must have gate pulldown R
 - Override µC internal pullup
- More sections = heatsink!
 - MOSFET $P = I^2 \cdot R_{DS}$
- May need RC snubber
 - Stray inductance (!)

Other Gotchas

- Motors
 - DC H-bridge driver
 - Steppers microstep
 - Servo PWM
- Noisemakers
 - Piezo
 - Speaker
- Keyboard / Keypads
- Thermistors

- SPI / I²C / OWP chips
- LCD Panels
- LED Char / Dot Matrix
- EEPROM / SD Data
- Ethernet / WiFi
- Zigbee / XBee
- Accelerometers
- •

Everything Else

Is

A Simple Matter of Software

More Info

arduino.cc/en/Reference/HomePage www.ladyada.net/learn/arduino/index.html todbot.com/blog/spookyarduino/ www.sparkfun.com/tutorials

and, of course ... softsolder.com/tag/arduino/

Copyright-ish Stuff

Some web images probably copyrighted, but shown & attributed here under "fair use" [whatever that is]

The rest is my own work

lacktriangle

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

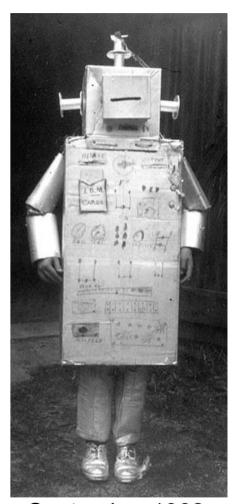
or send a letter to Creative Commons, 543 Howard Street, 5th Floor San Francisco, California, 94105, USA.

Ed Nisley

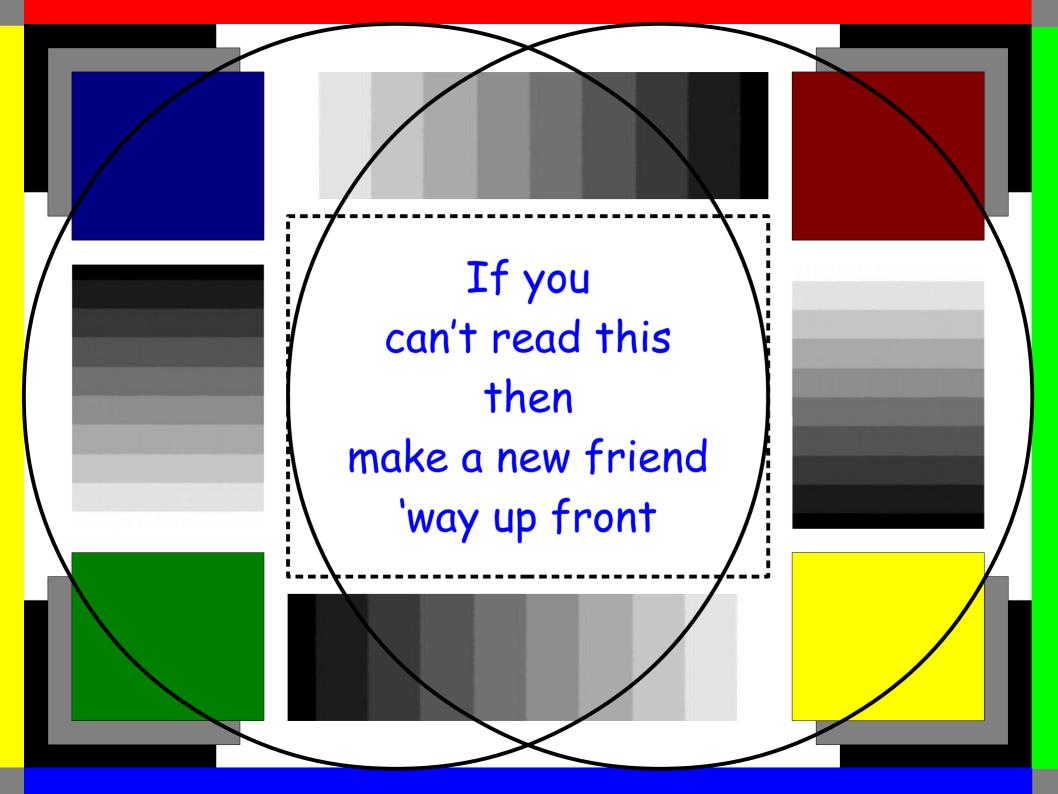
Say "NISS-lee", although we're on the half-essed branch of the tree

Engineer (ex PE), Hardware Hacker, Programmer, Author

The Embedded PC's ISA Bus: Firmware, Gadgets, Practical Tricks


Circuit Cellar www.circuitcellar.com

Firmware Furnace (1988-1996) - Nasty, grubby hardware bashing Above the Ground Plane (2001 ...) - Analog and RF stuff


Digital Machinist www.homeshopmachinist.net
Along the G-Code Way (2008 ...) - G-Code, math, 3D printing

Dr. Dobb's Journal www.ddj.com
Embedded Space (2001-2006) - All things embedded
Nisley's Notebook (2006-2007) - Hardware & software collisions

My Blog: The Smell of Molten Projects in the Morning softsolder.com

September 1962

