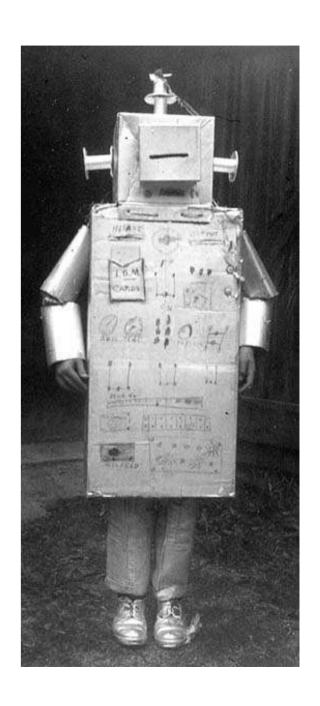
Watts to Wheels

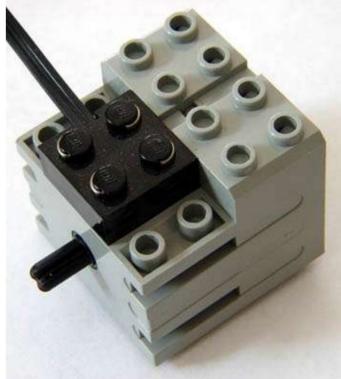
-or-


Why Your 'Bot Needs More Juice

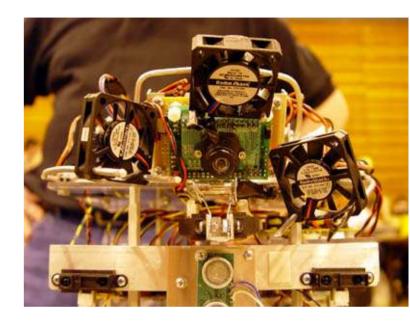
Ed Nisley
Nisley Micro Engineering
ed.nisley@ieee.org

2004 Trinity College Fire Fighting Home Robot Contest

Who Am I?


- Nisley: It's "Niss-lee"
- Above the Ground Plane
 - Circuit Cellar magazine
 - www.circuitcellar.com
 - Analog & RF stuff
 - This talk & more: June 2004
- Embedded Space
 - Dr. Dobb's Journal magazine
 - www.ddj.com
 - All about embedded systems
- The usual diversions
 - Recumbent radio
 - Home repair

Design Strategies


- Performance first?
 - Can't fit the motor
 - Can't tote the battery
- Hardware first?
 - See what happens
- Cost first?
 - Performance counts
- Iterative design?
 - Better start early
- You need numbers....
 - Physics!



Why Are We Here?

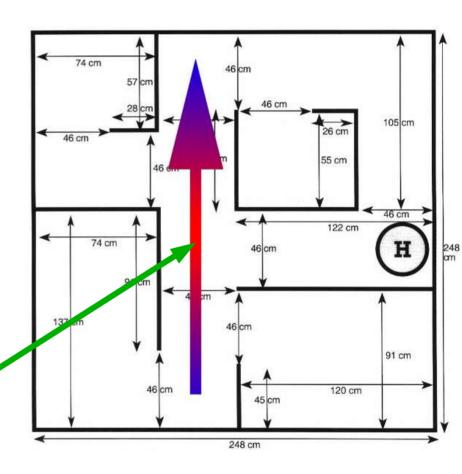
- Power!
 - how many watts?
- Linear Kinematics
 - $\rightarrow s=s_0+v_0t+at^2/2$
 - The rest is easy!
- Dynamics
 - Force → F=m×a
 - ► Traction \Rightarrow $\mu = F/F_n$
- ► Torque $\rightarrow \tau = s \times F$
- Motors & Gearing
- Why Things Go Wrong
- Freebies!

Linear Kinematics

- One-dimensional
 - s = distance
 - meters
 - v = velocity (speed)
 - meters/sec
 - a = acceleration
 - meters/sec/sec = m/s²
- \rightarrow $s=s_0+v_0t+at^2/2$
 - set ruler: $s_0 = 0$
 - at rest: $v_0 = 0$
- ▶ s=at²/2
 - It's that simple...

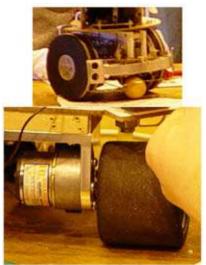
Useful Equations

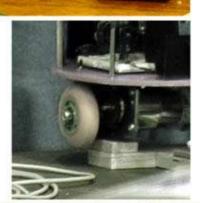
- $\rightarrow s=t\times(v_0+v)/2$
 - Measure: v & s → t
 - $t=2s/(v_0+v)$
- $v^2 = v_0^2 + 2a(s-s_0)$
 - Specs: s & a ⇒ v
 - $\mathbf{v} = \sqrt{(2a(s-s_0))}$
 - Measure: s & v → a
 - $a=v^2/2(s-s_0)$
- ▶ s=at²/2
 - Specs: s & a → t
 - t=√(2s/a)
 - Measure: s & t ⇒ a
 - a=s/(t²/2)



Kinematics says:

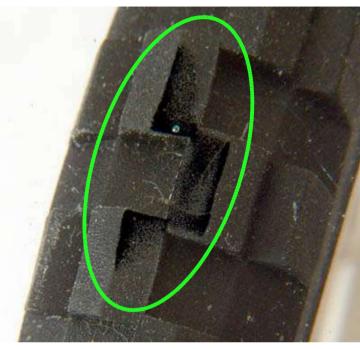
Assume your 'bot is a point...


Performance!


- Set a Spec...
 - Distance = s = 2 m
 - Time = t = 1 s
 - But accel 1 m, decel 1 m
 - s=1 m & t=0.5 s
- s & t ⇒ a
 - $a = s/(t^2/2) = 8 \text{ m/s}^2$
 - 1 $G = 9.8 \text{ m/s}^2...$
- a & s ⇒ v
 - $v = \sqrt{(2as)} = 4 \text{ m/s}$
 - ▶ 14 km/h = 9 mph = 13 f/s
- This is aggressive...

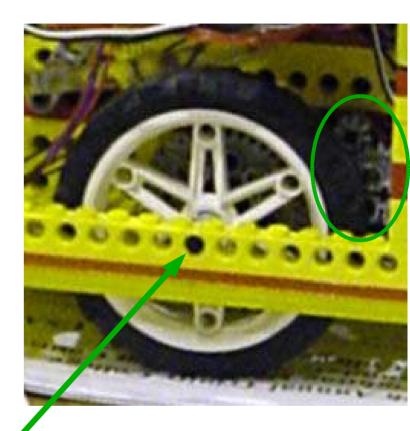
Dynamics

- $F=m\times a=m(dv/dt)$
 - Want change in v? ⇒ a
 - Have constant a? → F ∞ m
- Say robot weighs 1 kgf
 - not 1 kg, except on Earth
 - -1 kgf = 9.8 N = 2.2 lb
- $F = 1 \text{ kg} \times 8 \text{ m/s}^2 = 8 \text{ N}$
 - ightharpoonup 8 N = 0.8 kgf = 1.8 lb
- Force requires friction
 - Floor is flat, not cleated
 - Skid marks are bad form
 - How to measure friction?



Coefficient of Friction

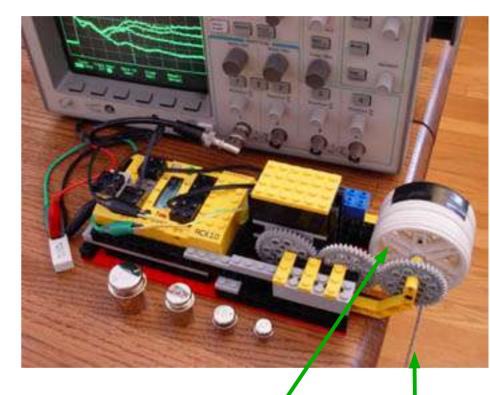
- Contact Patch
 - Tire compound
 - Robot weight (aka mass)
 - Photos ⇒ 0.5 kgf on 1 tire
- $\mu = F/F_n = pull/weight$
 - Does not depend on area!
 - Ideally, that is...
- Easy to measure
 - Brake or lock wheels
 - Drag with weight scale
 - Weigh 'bot in same units
- Answer: μ = 0.90
 - Hard = less, soft = more


Traction Limit

- Acceleration too high?
 - Lego? No problem!
 - Wild spec? Rrrmm...
- Traction needs weight
 - ▶ Traction ≤ µ×Weight
 - Weight = 8N/0.9 = 8.9 N
 - ightharpoonup 8.9 N = 0.9 kgf = 2 lb
 - Very close to 1 kgf spec!
- ► Traction → accel limit
 - If you're close...
 - ...other problems!
- How to get force?
 - Motors produce torque...

Torque

- Twist around an axis
- $\tau = s \times F$
 - s = distance: axis to force
 - F ≤ friction limit
 - Unit = meter-newton
 - newton-meter? Bah!
 - Not the same as energy!
- ▶ τ =0.041m × 8N
 - Need 0.33 m•N for 0.5 s
- Lego 4mm plastic shaft
 - $F = \tau / s = 0.33 \text{m} \cdot \text{N} / 0.002 \text{m}$
 - ▶ 164 N = 37 lbf
 - Anybody see a problem?

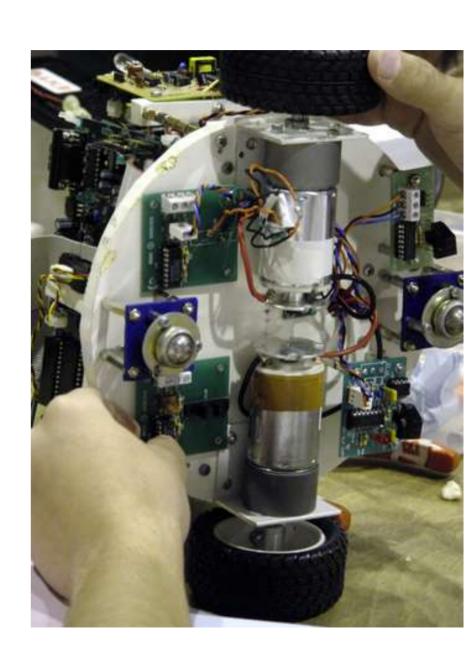


Lego tire is 81.6x15 mmRadius = 81.6/2 = 0.041 m

Lego shaft diameter is 4 mm Radius = 0.002 m

Motor Torque

- Lego Dynamometer
 - $\tau = s \times F$
 - s = radius of wheel
 - F = weight in kgf or gf
 - Usual assumptions
 - Weightless, frictionless
 - Inertialess rotation...
- Lift = 120gf max
 - $\tau = 0.033 \text{m} \times 1.1 \text{N}$
 - τ=0.<u>0</u>36 m•N
 - We need 0.33 m•N
 - Anybody see a problem?
- Inclined planes
 - Gravity dilution: sin(⊕)


Wheel radius = 33mm

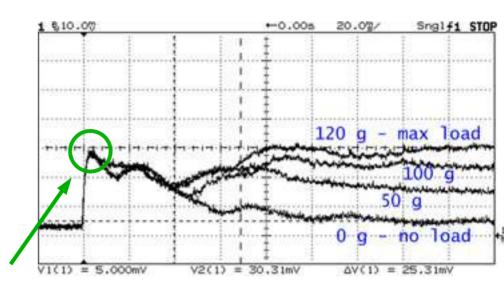
Weight = 0.120 kgf x 9.8 N/kgf = 1.1 N

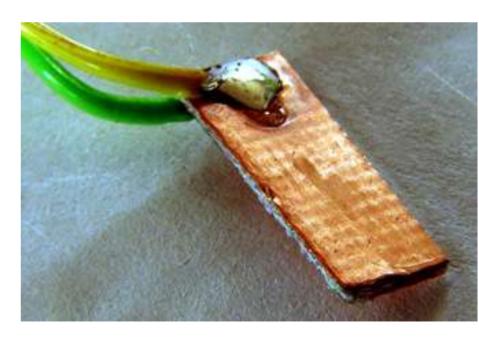
Nice Lego motor survey at http://www.philohome.com/motors/ motorcomp.htm finds stall torque = 0.06 m•N

Homework Hints

- Measure motor torque
 - Get the units right!
- ► Torque → Force
 - Use correct distance
- Force → Acceleration
 - Verify traction (hah!)
- ▶ Acceleration ⇒
 - Speed
 - Time
 - Distance
- ▶ ... ⇒ Performance
 - Now: fix your 'bot!

Gearing


- ▶ Torque $\tau = s \times F$
 - Big s = low F = low a
 - Small s = high F = low v
 - Tradeoff: speed vs accel
- Speed in gear train
 - r (rpmxteeth) = constant
 - Bigger gears go slower
 - Smaller gears push harder
 - Plastic breaks & wears out
- Power ∞ (rpm × torque)
 - Mind your units!
 - Pay attention to losses
 - Strength of materials



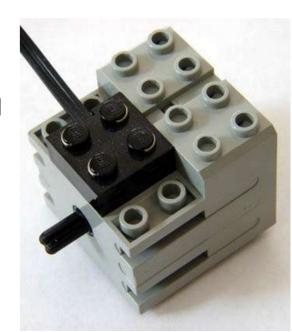
Motor Current

- ▶ Current ∞ load

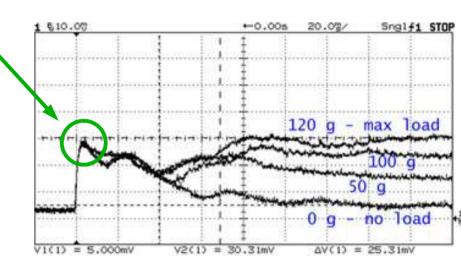
 - ► High accel ⇒ amps!
- Simple current probe
 - DVM is OK for DC load
 - Oscilloscope for peaks
 - **Let** Use 0.1Ω resistor **→** V
- Losses everywhere
 - Resistance loss: V=IR
- Use heavy wires?
 - At least not Wire-Wrap
 - Measure voltage drops
 - Connectors? Ugh!

Motor Power

- Watts = Volts × Amps
 - ▶ Amps


 load

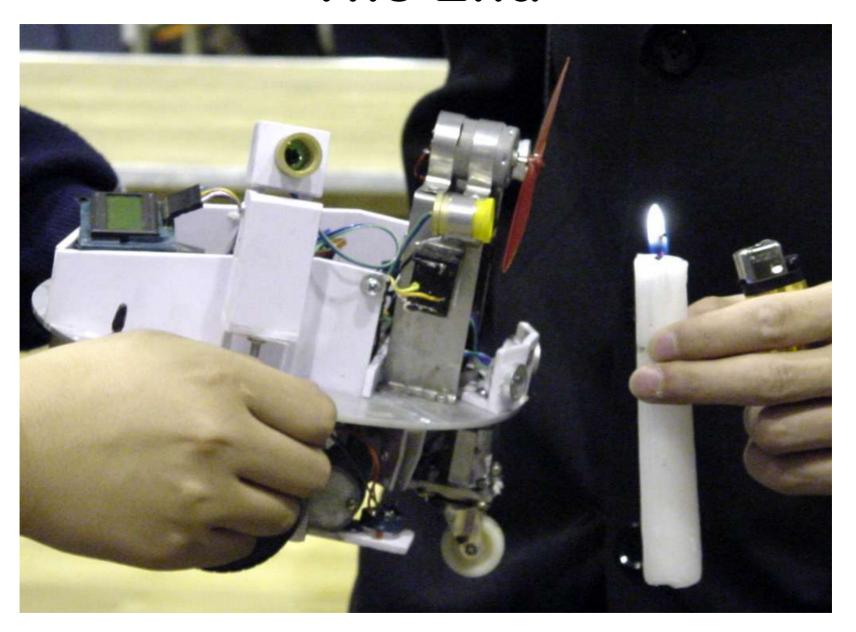
 accel
 - Volts = batteries
 - Nominally constant, but...
 - Watts ∞ accel
- Soooo...
 - Faster 'bots = more watts
 - Lower watts = slower 'bots
- Battery life = watt•hour
 - Or amp•hour
 - More watts → fewer hours
 - Note max current limits
 - Li-polymer in particular


1065 HP = 790 kW, 425 RPM

440 μHP 330 mW 340 RPM

Microcontroller Crashes

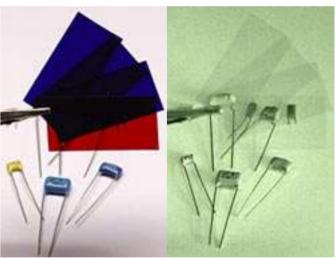
- Peak current at start
 - Voltage drop = I×R
 - Start motor → crash μC
- ▶ Brownout ⇒ weirdness
 - Reduced margins
 - Low-voltage glitches
 - Commutation noise
- Always...
 - Separate motor wires
 - Separate "ground" wires
 - Relays are good
 - But lousy speed controls
- Measure!



Homework Hints

- Words To Live By...
 - Think Thrice
 - Measure Twice
 - Cut Once
- Use the Numbers
 - Even with guesses
 - Math helps you win
- Expect & Plan For...
 - Electrical noise
 - Extraneous IR
 - Dirt & Grit
- Charge the Battery!
- Have fun...

The End



But don't go away...

Freebies

- Current probe resistor
 - **100** mΩ → 100 mV/A
 - 7A continuous current (hah!)
- IR Filter material
 - My 2003 seminar has spectra
 - Use 3 blue + 1 red → IR only
 - Don't look at the sun!
- Slides as PDF → diskette(!)
 - Also on Trinity website
 - OpenOffice on Linux/Win
- Not quite enough for all
 - If you're not going to use it, then don't grab it!

The End

(really)