B4-size Light Pad: Stabilizing the USB Connector

What used to be a “light box” had become a “light pad” powered through a USB Micro-B connector on the side. Unfortunately, the pad’s 5 mm thickness allows for very little mechanical reinforcement around the USB jack, while providing infinite opportunity to apply bending force. Over the course of the last half-dozen years (during which the price has dropped dramatically, despite recent events), the slightest motion flickered the LEDs.

So I squished the jack’s metal shell back into shape, found a short right-angle USB cable, and conjured a reinforcing fixture from the vasty digital deep:

LitUp LED Light Pad
LitUp LED Light Pad

The plate fits under the light pad, where a strip of super-sticky duct tape holds it in place:

LitUp Light Pad USB jack reinforcement - bottom
LitUp Light Pad USB jack reinforcement – bottom

The USB plug fits between the two blocks with hot-melt glue holding it in place and filling the gap between the plug and the pad.

I’d like to say it’s more elegant than the cable redirection for my tablet, but anything involving black electrical tape and hot-melt glue just isn’t in the running for elegant:

LitUp Light Pad USB jack reinforcement - top
LitUp Light Pad USB jack reinforcement – top

On the other paw, that socket ought to last pretty nearly forever, which counts for a whole lot more around here.

The retina-burn orange tape patches on the connector eliminate all the fumbling inherent to an asymmetric connector with invisible surface features. The USB wall wart on the other end of the cable sports similar markings.

The OpenSCAD source code as a GitHub Gist:

// Bracket to protect USB jack on LitUp LED Pad
// Ed Nisley KE4ZNU 2022-03-28
Protrusion = 0.1; // make holes end cleanly
Pad = [10.0,30.0,1.2];
Plug = [8.0,10.5 + 0.5,8.0];
BasePlate = [Pad.x + Plug.x,Pad.y,Pad.z];
// Create parts
module Stiffener() {
difference() {
union() {
cube(Plug + [2*Protrusion,0,Plug.z],center=false);
// Build them