Advertisements

Archive for February 19th, 2019

“5 W” G4 COB LED Specsmanship

A bag of G4 COB LEDs arrived from halfway around the planet:

G4 COB LEDs - 15 and 18 LED modules
G4 COB LEDs – 15 and 18 LED modules

Those are “5 W” and “4 W” cool white modules, respectively, with another set of 4 W warm white looking pretty much the same. There’s no provision for heatsinking, which makes the wattage seem suspect; halogen G4 bulbs run around 20 W, for whatever that’s worth.

The silicone overlay becomes nearly transparent when seen through an ordinary desktop document scanner:

Circular 12V COB 18 LED panel
Circular 12V COB 18 LED panel

Highlighting the PCB copper pours shows 18 LEDs arranged in three series groups of six LEDs in parallel:

Circular 12V COB 18 LED panel - copper layout
Circular 12V COB 18 LED panel – copper layout

The “smart IC” touted in the writeup turns out to be a bridge rectifier for AC or DC power:

G4 COB LED - 18 LED - components
G4 COB LED – 18 LED – components

The SMD resistors on all 15 modules measure 27.6 Ω, more or less, and seem randomly oriented face-up or face-down. I assume that one is face-down; maybe it’s just unlabeled on both sides.

Back of the envelope: there’s no way it will dissipate 5 W. The bridge drops 1.4 V = 2×0.7, the LEDs drop maybe 9 V, leaving the resistor with 1.6 V to pass all of 60 mA, so call it 700 mW.

Some measurements:

G4 COB LED measurements
G4 COB LED measurements

With 12 VDC applied to the pins, the bridge drops 1.6 V, the LEDs 8.2 V, and the resistor 2.2 V, with 80 mA through the whole affair dissipating just under 1 W.

Huh.

Cranking the supply until the current hits 200 mA puts 15.7 V across the pins for a total dissipation of 3.1 W, burning 1.7 W in the LEDs and 1.1 W in the resistor.

Cranking the supply to 21.3 V drives 410 mA, dissipates just under 9 W total, produces a curl of rosin smoke from the PCB, and maybe delaminates the silicone around some of the LEDs.

OK, now I have a crash test dummy.

Given complete control over the application, I’ll strip everything off the PCB and bond it to a heatsink of some sort. With 6 LEDs in parallel, 120 mA (6 × 20 mA) total current might be reasonable and 200 mA (6 × 30 mA) probably won’t kill the things outright. Plus, I have spares.

An external 18 Ω resistor should suffice. Perhaps a pair of 6 Ω SMD resistors on the PCB, with fine-tuning through an external resistor. Call it 250 mW apiece: don’t use little bitty SMD resistors.

Advertisements

,

3 Comments