Archive for August 31st, 2009

Horrible Noises Inside Kenmore HE3 Washer: Fixed!

So our whoop-dee-doo Sears Kenmore HE3 clothes washer started emitting horrible scratching & grinding noises, but only every now and then during the high-speed spin cycle or, more rarely, the washing agitation cycle.

In an ordinary washer, you’d suspect the transmission was going bad, but the HE3 has a direct-drive 3-phase motor: no transmission to wear out.

A bit of searching shows HE3 washer drums may fall apart at their welded (?) seams, but that didn’t seem to be the case here. So I press-ganged our daughter into a plumbing job; the machine is something over six years old, so it’s not as if we have any warranty to void.

Move the washer out where you can get to the back without contortions. Pull the plug, turn off the water, unscrew the water supply hoses at the back panel, squash the hose clamp & remove the drain hose.

Sediment buildup in hot water inlet

Sediment buildup in hot water inlet

One obvious, but unrelated, problem appeared when we disconnected the water hoses: plenty of black grit in the hot water inlet. Looks like it’s time to drain & flush the hot water heater again, which will turn into a major project because the anode rod has firmly rust-welded itself in place. That’s a project for another day…

Disassembling the cabinet requires a Torx T-20 bit. There are a lot of screws, so fetch a stable container to hold them all.

Take off the top cover (three screws, then slides back) to reveal the angle brace across the back that holds all the electronics and valves and suchlike. Pull the big vapor vent tube (on the right as you face the rear) out of that bracket, remove the eight (!) screws holding the bracket in place, and move it up out of the way.

Remove the back cover, taking care to not loosen the screws holding the frame crossmembers in place; those are the screws in the U-shaped cutouts along the edges.

Note: you can remove just the back cover by removing the lower screws in the angle brace, all the screws holding the cover, then sliding it down and out at the bottom. It’s easer to see what’s going on if you take the top cover off and moving the angle brace frees up a lot of gimcrackery that gets in your way. Your choice.

Everything connects to the drum housing through exceedingly flexible rubber boots held on by circumferential wire clamps. Grab the ends with Vise-Grip pliers, squash ’em together, and the clamp should slide off the housing onto the boot. Peel the boot off and you can look inside.

Foreign Object Sighted

Foreign Object Sighted

Peering in through the pressure sensor opening in the bottom rear of the housing revealed something odd: a loose black cylinder. A bit of deft tweezer and grabber work pulled out a much-the-worse-for-wear ballpoint pen housing, minus the cap, point, and pocket clip. The fiber-fill ink reservoir formed a tuft at one end.

Mmmm, that would account for the blue water in the drain tube…

Combine the number of missing parts with an inability to see any of them in the bottom of the housing: more surgery is indicated.

Tub drain boot

Tub drain boot

The housing drains into the ejector pump through that huge black boot clamped onto the bottom of the drum housing. Put a pan underneath the pressure sensor hole, squeeze the boot, and water will bloosh out the sensor hole, generally landing in the pan. There’s a floating-ball check valve inside the boot that prevents backflow to the housing, so you may need some wiggly-jiggly action to work the water around the valve. A few reps will get most of the water out of the drain boot.

Drain Boot Removed - Pump Inlet

Drain Boot Removed – Pump Inlet

Remove the boot from the housing and pump inlet, remove the ball, and admire the innards. We found most of the rest of the pen in the drain boot, plus a generous helping of slime and gunk. Oh, and a hairband and a big chunk of a pencil.

The pump has a juice-can-size reservoir just inside its inlet, which I think is there to collect debris: a barrier keeps most of the big chunks out of the pump impeller. There’s no way to get stuff out other than lying flat on your stomach and sticking your finger into that slimy hole, so get over it. We extracted the remaining pen bits and most of the rest of the pencil.

While you’re in there, roll over onto your back, reach up inside the drum housing and feel around to get anything else out. Your assistant can shine a flashlight down through the drum perforations; you’ll be able to see the shadows cast by any odds & ends that are lying on the housing.

Wipe the slime off the rubber boots, reassemble in reverse order, and you’re done!

However: the bottom of the washer consists of a big metal pan that will, most likely, start to rattle just after you push the washer back in position. Removal isn’t really an option because one of the front screws is under the motor drive box, but you can sort of pry up the edges and stuff thin cardboard, strips of duct tape, or other elastic stuff between the pan and the washer frame. It took me far too many iterations to figure out what was rattling around in there: it is not obvious!

Debris From Washer

Debris From Washer

Here’s what we found in the drum housing, drain boot, and pump settling tank: the corpse of one of my favorite Uni-Ball Micro pens, a tiny screw, bits of a pencil that my assistant had been looking for, and one of her hairbands.

That pretty much explains the intermittent grinding sounds: the drum would rotate normally until the swirling water swept the pen housing into contact with the drum, at which point the 800-some-odd RPM rotation would grind the pen against the housing for a few laps. Ditto for the pencil.

Now, the mystery is how that stuff got from inside the drum past the rubber sealing gasket into the space between the drum and the housing. There doesn’t seem to be any way to get a long rigid object through there, but obviously it happens!

Slime Behind Door Gasket

Slime Behind Door Gasket

After you move the washer back into position, take ten minutes and a generous handful of rags to wipe the abundant collection of mold & mildew from behind the rubber gasket. You can sort of evert the gasket, which simplifies access to the edge of the drum. As you can see, ours has a nice biofilm going on in there; not visible is the gunk growing on the back side of the gasket.

It seems HE3 washers have a reputation for smelling bad, due to that sort of growth in hidden places. Oddly, we don’t have an odor problem, obviously not through any action on our part. Rumor has it that running a pure-bleach hot-water cycle helps, as does a product for dishwashers that removes their stink, but we don’t have any experience with those.

As a mental math exercise, I had my assistant divide the $300 bucks a plumber would have billed for this repair by the $7/hr she’d get for a typical minimum-wage shit job. She’s thinking that becoming a plumber might beat smiling at retail customers in a dying mall… but I think she should concentrate more on her math & science.

[Rant: Not that America seems to value tech jobs much these days, but she has the advantage of being female, so maybe she can still get a tech gig. Don’t get me started, you know how I get.]

Anyhow, the washer runs just as quietly as it ever did, which is to say that like a turbojet engine spooling up during the spin cycle. At least it doesn’t sound like it’s ingesting a bird every now & again…

[Update: And then the spider holding the drum in place failed, as it does with so many of these washers.]

Advertisements

,

1 Comment